Results of Proficiency Test Biogasoline E85 May 2010

Organised by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands

Authors:ing R. J. StarinkCorrectors:dr. R.G. Visser & ing. M. AudierReport:iis10B02E85

July 2010

CONTENTS

1	
2	SET UP
2.1	QUALITY SYSTEM
2.2	PROTOCOL
2.3	CONFIDENTIALY STATEMENT
2.4	SAMPLES
2.5	ANALYSES
3	RESULTS
3.1	STATISTICS
3.2	GRAPHICS
3.3	Z-SCORES
4	EVALUATION
4.1	EVALUATION PER TEST
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

Appendices:

1.	Data, statistical results and graphic results	9
2.	Number of participants per country 2	24
3.	Abbreviations and literature	25

1 INTRODUCTION

On request of several participants, the Institute for Interlaboratory Studies decided to organise a proficiency test for the analysis of Biogasoline E85 during the annual proficiency testing program 2009/2010. In this international interlaboratory study 19 laboratories in 13 different countries have participated. See appendix 2 for a list of participants in alphabetical country order. In this report, the results of the Biogasoline E85 proficiency test are presented and discussed.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organiser of this proficiency test. It was decided to evaluate the E85 gasoline according the two different test scopes of ASTM D5798 and of EN15293. The analyses for fit-for-use and homogeneity testing were subcontracted. In this proficiency test, the participants received one sample of Biogasoline E85: 1*1 litre (labelled #1046). Participants were requested to report rounded and unrounded results. The unrounded results were preferably used for statistical evaluation.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO guide 43, ISO17043:2010 and ILAC-G13:2007. This ensures 100% confidentially of participant's data. Also customer's satisfaction is measured on a regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organization, Statistics and Evaluation' of January 2010 (iis-protocol, version 3.2), which can be downloaded from www.iisnl.com.

2.3 CONFIDENTIALITY STATEMENT

All data present in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

The necessary sample material of about 60 litres of Biogasoline E85 was purchased at a local pump station. After homogenisation, the material was transferred into 58 brown glass bottles of 1 litre (labelled #1046). The homogeneity of the subsamples #1046 was checked by determination of Density @15°C in accordance with ASTM D4052:09 and Water in accordance with ASTM E1064:08 on 8 stratified randomly selected samples.

	Density @ 15°C in kg/L	Water in %M/M
Sample #1046-1	0.78474	0.219
Sample #1046-2	0.78472	0.218
Sample #1046-3	0.78473	0.219
Sample #1046-4	0.78475	0.219
Sample #1046-5	0.78474	0.218
Sample #1046-6	0.78479	0.220
Sample #1046-7	0.78483	0.218
Sample #1046-8	0.78483	0.219

table 1: homogeneity test of subsamples #1046

From the above test results, the repeatabilities were calculated and compared with 0.3 times the corresponding reproducibilities in agreement with the procedure of ISO 13528, Annex B2 in the next table:

	Density @ 15 °C in kg/L	Water in %M/M
r (sample #1046)	0.00012	0.002
reference test	ISO12185:96	EN15489:08
0.3*R (reference test)	0.00015	0.007

table 2: repeatabilities of the subsamples #1046

The calculated repeatabilities are each less than 0.3 times the reproducibility of the corresponding reference method. Therefore, homogeneity of the subsamples #1046 was assumed.

To the participants: 1*1 litre of sample #1046 was sent on April 28, 2010.

2.5 ANALYSIS

The participants were requested to determine on sample #1046: Acidity, Copper, Copper Strip Corrosion, Density, Existent Gum, Inorganic Chloride, Oxidation Stability, pHe, Phosphorous, Sulphur, Water, Ethanol (%V/V and %M/M), Methanol, Higher Saturated Monoalcohols (C3-C8), Ethers, Oxygen content.

To get comparable results a detailed report form, on which the units were prescribed as well as some of the required standards, was sent together with each set of samples. Also, a letter of instructions and a SDS were added to the package.

3 RESULTS

During four weeks after sample despatch, the results of the individual laboratories were gathered. The original data are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder fax was sent to the laboratories that had not reported results at that moment. Shortly after the deadline, the available results were screened for suspect data. A result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the results. Additional or corrected results are used for data analysis and original results are placed under 'Remarks' in the result tables in appendix 1.

3.1 STATISTICS

Statistical calculations were performed as described in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of January 2010 (iis-protocol, version 3.2).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation of the results should be used with due care.

In accordance to ISO 5725 (1986 and 1994) the original results per determination were submitted subsequently to Dixon and Grubbs outlier tests. Outliers are marked by D(0.01) for the Dixon test, by G(0.01) or DG(0.01) for the Grubbs test. Stragglers are marked by D(0.05) for the Dixon test, by G(0.05) or DG(0.05) for the Grubbs test. Both outliers and stragglers were not included in the calculations of averages and standard deviations. Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are under the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a "x". Accepted data are represented

as a triangle. Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms (see appendix 3; nr.13 and 14).

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. The target standard deviation was calculated from the literature reproducibility by division with 2.8. The z-scores were calculated in accordance with:

 $z_{(target)} = (result - average of PT) / target standard deviation$

The $z_{(target)}$ scores are listed in the result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore the usual interpretation of z-scores is as follows:

| z | < 1good
1 < | z | < 2satisfactory
2 < | z | < 3questionable
3 < | z | unsatisfactory

4 EVALUATION

No problems were encountered during the execution of this proficiency test. In total five laboratories reported the results after the final reporting date and two participants decided not to report any results.

Most laboratories reported results, but not all laboratories were able to perform all analyses requested. Finally, 17 laboratories did send in 150 numerical results. Observed were 9 outlying results, which is 6.0%. In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

4.1 EVALUATION PER TEST

In this section the results are discussed per test. All data sets proved to have a normal distribution.

- <u>Acidity</u>: This determination is not problematic. No statistical outliers were observed and the calculated reproducibility is in full agreement with the requirements of EN15491:08.
- <u>Copper as Cu:</u> No significant conclusions were drawn as only one numerical result was reported.

- <u>Copper strip</u>: No problems have been observed, all reporting participants agreed on a result of 1.
- <u>Density @15°C</u>: This determination was problematic for several laboratories. Two statistical outliers were observed and the calculated reproducibility after rejection of the statistical outliers is not at all in agreement with the requirements of ISO12185:96.
- Existent Gum: This determination was problematic at this low level of 0.7 mg/100mL. Although no statistical outliers were observed, the calculated reproducibility is not in agreement with the requirements of ISO6246:97.
- Inorganic Chloride: Due the low concentration of inorganic chloride (0.45 mg/L) in this sample no conclusions were drawn. The application range of EN15492:08 is 4 -30 mg/L.
- Oxidation stab.: In this determination no problems have been observed. All reporting participants agreed on a result above 900 minutes.
- <u>pHe</u>: This determination was very problematic. Only one statistical outlier was observed. However, the calculated reproducibility after rejection of the statistical outlier is not at all in agreement with the requirements of EN15490:08, nor with the requirements of ASTM D6423:08.
- <u>Phosphorus:</u> Due the low concentration (0.12 mg/L) in this sample no conclusions were drawn. The application range of EN15487:08 is 0.15 1.50 mg/L.
- <u>Sulphur</u>: This determination seems not problematic. Although the consensus value is below the application range of EN15486 (5 20 mg/kg), the calculated reproducibility is in good agreement with the requirements estimated from EN15486:08. No statistical outliers were observed.
- Water:This determination was problematic for several laboratories. Two
statistical outliers and one false negative result were observed. However,
the calculated reproducibility after rejection of the statistical outliers is in
good agreement with the requirements of EN15489:08.
- Ethanol: This determination (%V/V and %M/M) may be very problematic. In total three statistical outliers were observed. After rejection the statistical outliers, both calculated reproducibilities are not at all in agreement with the requirements of ASTM D5501:09. However, the precision of D5501 were determined using 93-97% ethanol and it may not be valid for 85% ethanol.

- <u>Methanol</u>: No significant conclusions were drawn as only a very few numerical results were reported. The reported results vary over a wide range from 0.0079 0.3164%V/V.
- <u>Higher saturated alcohols:</u> No significant conclusions were drawn as only a few numerical results were reported.
- <u>Ethers:</u> No significant conclusions were drawn as only a few numerical results were reported.
- <u>Oxygen</u>: This determination was problematic. One statistical outlier was observed. However, the calculated reproducibility after rejection of the statistical outlier is not at all in agreement with the requirements of EN1601:97.

4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the reproducibility as declared by the relevant standard and the reproducibility as found for the group of participating laboratories. The assigned values, calculated reproducibilities and reproducibilities, derived from literature standards (in casu ASTM, ISO, EN standards) are compared in the next table.

Parameter	unit	n	mean	2.8 * sd	R (lit)
Acidity as acetic acid	%M/M	11	0.00161	0.00130	0.00137
Copper as Cu	mg/kg	-	n.a.	n.a.	n.a.
Copper Strip 3 hrs @ 50°C		14	1 (1a)	n.a.	n.a.
Density @ 15°C	kg/m ³	16	784.82	0.83	0.50
Existent Gum (washed)	mg/100mL	8	0.71	1.17	0.95
Inorganic Chloride	mg/L	6	0.45	0.29	(1.19)
Oxidation Stability	min.	8	>900	n.a.	n.a.
рНе		11	7.10	1.43	0.68
Phosphorous	mg/L	5	0.12	0.15	(0.07)
Sulphur	mg/kg	12	2.39	1.05	2.05
Water	%M/M	13	0.221	0.015	0.023
- Ethanol	%V/V	11	84.175	2.562	0.530
- Ethanol	%M/M	10	85.269	2.073	0.530
- Methanol	%V/V	5	n.a.	n.a.	n.a.
- Higher saturated monoalc.	% V/V	3	n.a.	n.a.	n.a.
- Ethers (C5-highers)	%V/V	7	n.a.	n.a.	n.a.
- Oxygen content	%M/M	7	29.60	0.71	0.30

table 3: performance evaluation sample #1046

Without further statistical calculations, it can be concluded that for several tests there is not a good compliance of the group of participants with the relevant standards. The problematic tests have been discussed in paragraph 4.1.

APPENDIX 1

Determination of Total Acidity as Acetic Acid on sample #1046; results in %M/M

lab	method	value	mark	z(targ)	remarks
323					
340	EN15491	0.0023		1.41	
463	D1613	0.00091		-1.43	
494	EN15491	0.0015		-0.23	
496	EN15491	<0.003			
862	EN15491	0.0014		-0.43	
1017					
1033					
1047	EN15491	0.0012		-0.84	
1080	in house	<0.01			
1121					
1124	EN15491	0.0013		-0.64	
1154					
1201	EN15491	0.0019		0.59	
1251	EN15491	0.0018		0.38	
1300	EN15491	0.00245		1.71	
1706					
1727	EN15491	0.00147		-0.29	
1835	EN15491	0.0015	С	-0.23	First reported 15
	normality	ОК			
	n	11			
	outliers	0			
	mean (n)	0.00161			
	st.dev. (n)	0.000463			
	R(calc.)	0.00130			
	R(EN15491:08)	0.00137			
		2.00.07			

Determination of Copper on sample #1046; results in mg/kg

lab	method	value	mark	z(targ)	remarks
323					
340					
463					
494					
496					
862					
1017					
1033					
1080					
1121					
1124	EN15488	0.003			
1154					
1201	EN15488	<0.1			
1251					
1300					
1706					
1727					
1835					
	normality	na			
	n	11.a.			
	outliers	0			
	mean (n)	na			
	st.dev. (n)	n.a.			
	R(calc.)	n.a.			
	R(EN15488:08)	n.a.			

Determination of Copper strip Corrosion 3hrs/50°C on sample #1046; rating

lab	method	value	mark	z(targ)	remarks
323					
340	ISO2160/D130	1a			
463	D130	1a			
494	ISO2160	1			
496	D130	1a			
862	D130	1a			
1017	ISO2160/D130	1a			
1033	IP154	1a			
1047	ISO2160	1a			
1080	D130	1a			
1121	IP154	1a			
1124	ISO2160	1a			
1154	_				
1201	D130	1a			
1251	D130	1a			
1300	ISO2160	1a			
1706					
1727					
1835					
	a a successful to a				
	normality	n.a.			
	n autliana	14			
	outliers	(1 - 1)			
	mean (n)	i (ia)			
	SLUEV. (N)	n.a.			
		n.a.			
	R(1502160)	n.a.			

Determination of Density @ 15°C on sample #1046; results in kg/m³

lab	method	value	mark	z(targ)	remarks
323					
340	ISO12185	784.61		-1.17	
463	ISO12185	785.5	С	3.81	First reported 787.5
494	ISO12185	784.7	С	-0.67	First reported 748.7
496	ISO12185	784.76		-0.33	
862	D4052	784.70		-0.67	
1017	ISO12185	787.86	G(0.01)	17.03	
1033	IP365	784.8		-0.11	
1047	ISO12185	784.5		-1.79	
1080	ISO12185	784.9		0.45	
1121	IP365	784.4		-2.35	
1124	ISO12185	784.90		0.45	
1154	ISO12185	777.1	C,G(0.01)	-43.23	Reported 0.7771
1201	ISO12185	784.5		-1.79	
1251	ISO12185	784.8		-0.11	
1300	ISO12185	784.67		-0.84	
1706	ISO12185	784.9		0.45	
1727	ISO12185	785.17		1.96	
1835	D4052	785.3	С	2.69	First reported 0.7853
		014			
	normality	OK			
	n	16			
	outliers	2			
	mean (n)	784.82			
	st.dev. (n)	0.296			
	R(calc.)	0.83			
	R(ISO12185:96)	0.50			

Determination of Existent Gum (washed) on sample #1046; results in mg/100mL

lab	method	value	mark	z(targ)	remarks
323					
340	ISO6246	0.8		0.26	
463	ISO6246	<0.5			
494	ISO6246	0.2		-1.51	
496	ISO6246	<1			
862	D381	0.4		-0.92	
1017	ISO6246	1		0.85	
1033	IP131	0.0	ex	-2.10	Result excluded, not a real result
1047	ISO6246	<1.0			
1080	ISO6246	1.0		0.85	
1121					
1124	ISO6246	0.1		-1.81	
1154					
1201	ISO6246	<0.5			
1251	ISO6246	1		0.85	
1300	ISO6246	1.2		1.44	
1706					
1727					
1835					
	normality	OK			
	n	8			
	outliers	0			
	mean (n)	0.71			
	st.dev. (n)	0.419			
	R(calc.)	1.17			
	R(ISO6246:97)	0.95			

Determination of Inorganic Chloride on sample #1046; results in mg/L

lab	method	value	mark	z(targ)	remarks
323					
340					
463					
494					
496	inh-395	0.37			
862	EN15492	0.56			
1017					
1033					
1047	EN15484	0.48			
1080					
1121					
1124	EN15492	0.29			
1154	EN15492	0.504			
1201	EN15492	~1			
1251	EN15492	<5			
1200	EN15492	\			
1706	LIN13492	0.5165			
1700					
1025					
1635					
	normality	0K			
	n	6			
	outliers	0			
	mean (n)	0.454			
	st.dev. (n)	0.1025			
	R(calc.)	0.287			
	R(EN15492:08)	(1.192)			Application range: 4 – 30 mg/L
0.0					
0.6 T					
					Δ
0.5 -				۵	Δ
0.4 -					
0.3 -	۵				
0.2 -					
0.1 +					
0 L	+	~			
	1124	86		1047	<u>é</u> 8 8

Determination of Oxidation Stability on sample #1046; results in minutes

lab	method	value	mark	z(targ)	remarks
323					
340	ISO7536	>960			
463					
494	D525	>900			
496	D525	>1000			
862	D525	>900			
1017					
1033	IP460	>960			
1047					
1080					
1121					
1124	ISO7536	>900			
1154					
1201	D525	>900			
1251					
1300	ISO7536	>900			
1706					
1727					
1835					
	normality	n.a.			
	n	0			
	outliers	0			
	mean (n)	>900			
	st.dev. (n)	n.a.			
	R(calc.)	n.a.			
	R(ISO7536:96)	n.a.			

Determination of pH_e on sample #1046;

lab	method	value	mark	z(targ)	remarks						
323 340 463	EN15490 D6423	 6.53 7.564		-2.32 1.93							
494 496 862	EN15490 D6423	7.75 7.58		2.69 1.99							
1033 1047 1080	D6423 EN15490	7.67 6.64		2.36 -1.87							
1121 1124 1154	D6423	 6.523 		-2.35 							
1201 1251 1300	EN15490 EN15490 EN15490	7.5 6.0 6.619	G(0.05)	1.66 -4.50 -1.96							
1706 1727 1835	EN15490 EN15490	6.74 6.93		-1.46 -0.68							
	normality n outliers mean (n) st doy. (n)	OK 11 1 7.095 0.5111									
	R(calc.) R(EN15490:08)	0.5111 1.431 0.681			Compare I	R(D6423)	= 0.520				
8 - 7.5 -								x	<u>-</u>	A	<u>A</u>
7 -					A	۵					
6.5 -	 ×	Δ									
5.5		8	8	244	Z	8	5	8	8	8	8
07-	÷ ÷		6		<u>+</u>	31	12	N	w	92	4
0.7		I	Kernel Der	nsity							
0.6 -		\wedge									
0.5 -			$ \land$								
0.4 -			\vee								
0.3 -											
0.2 -		/									
0.1 -	/	/	(
0		1		\mathbf{k}							
4	5	6	7 8	9							

Determination of Phosphorus on sample #1046; results in mg/L

lab	method	value	mark	z(targ)	remarks
323					
340					
463					
494	EN15487	0.09			
496	EN15487	<0.15			
862	D3231	0.06			
1017					
1033					
1047	EN15487	<0.15			
1080					
1121	Doood				
1124	D3231	0.10			
1154					
1201	EIN13467	<0.5			
1201	EN15/97	0 1006			
1706	LN13407	0.1990			
1727	EN15487	<0.20			
1835	EN15487	0.13			
1000	ENTO-OT	0.10			
	normality	ОК			
	n	5			
	outliers	0			
	mean (n)	0.116			
	st.dev. (n)	0.0530			
	R(calc.)	0.149			Compare R(D3231) = 0.130
	R(EN15487:08)	(0.070)			Application range 0.15 – 1.50 mg/L
0.05					
0.25					
0.2 -					Δ
0.15 -					
					Δ
0.1			۵		Δ
0.05 +	Δ				
o 🖵					
	8		\$		₹ 8 8
					7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Determination of Sulphur on sample #1046; results in mg/kg

lab	method	value	mark	z(targ)	remarks	5					
323											
340	EN15486	2.1		-0.40							
463	EN15486	2.83		0.60							
494	EN15486	2.45		0.08							
496	EN15486	3.1		0.96							
862	D5453	2.0		-0.54							
1017											
1033											
1047	EN15486	2.3		-0.13							
1080	15020846	2.2		-0.26							
1121	10000004										
1124	15020884	1.92		-0.65							
1104	ISU20640	2.9		0.69		active real	.140				
1201	EN15400	<1 2.1		<-1.90	Faise ne	egative rest					
1201	EN15486	2.1		-0.40							
1706	LIN13400	2.409		0.02							
1727											
1835	EN15486	2 4 1		0.02							
1000	ENTOTO	2.71		0.02							
	normality	OK									
	n	12									
	outliers	0									
	mean (n)	2.39									
	st.dev. (n)	0.375									
	R(calc.)	1.05			Compar	e R(ISO208	846) = 1.3	9			
	R(EN15486:08)	2.05			Applicat	ion range :	5 – 20 mg	/kg			
5 -											
4.5											
4.5 -											
4 -											
3.5 -											
3 -									•	۵	▲
2.5 -								^	-		
2 -		Δ	A	۵	Δ	-	-				
15	<u>۵</u>										
1.0 -											
1-											
0.5 -											
0	<u>k</u> 8	98	8	8	40	8	8	2	ĝ	2	8
	÷ -		2	7		÷	7	•	•	÷	
1.2 -											
			Kernel De								
1		\wedge	۱.								
			}								
			}								
0.8 -		\$									
		{	{								
			1								
0.6											
			1								
		1									
0.4 -		(
			\ \								
				.							
0.2		}		\							
0.2		}		λ							
		1		$\langle \rangle$							
		/									
	1	2	2	1							
	I	2	5	4							
1											

Determination of Water on sample #1046; results in %M/M

lab	method	value	mark	z(targ)	remarks							
323 340 463 494 496 862 1017 1033	EN15489 ISO12937 EN15489 EN15489 E1064 IP438	 0.23950 0.2185 0.2220 0.227 0.2220 <0.0030	DG(0.05)	2.24 -0.32 0.11 0.72 0.11	- - - - - - - - - - - - - -							
1047 1080 1121 1124 1154 1201 1251 1300 1706	EN15489 D6304 IP539 EN15489 EN12937 EN15489 EN15489 EN15489	0.211 0.23 0.220 0.2398 0.229 0.215 0.223 0.2202	DG(0.05)	-1.23 1.09 -0.13 2.28 0.96 -0.74 0.23 -0.11								
1727 1835	EN15489 EN15489	0.2175 0.2191		-0.44 -0.24								
	normality n outliers mean (n) st.dev. (n) R(calc.) R(EN15489:08)	OK 13 2 0.2211 0.00537 0.0150 0.0230			Compare R	(E1064)	= 0.0071					
0.25												
0.24 - 0.23 -								Δ	Δ	Δ	<u>*</u>	<u>*</u>
0.22 - 0.21 -	۵	۵ ۵	۵	Δ Δ	<u> </u>	A	<u> </u>					
0.2 - 0.19 -												
0.18	1201	463	82	1121	8	494	স্থ	88	1154	1080	30	1124
60												
50 -		ſ	kemei Der	ISITY								
40 -												
30 -												
20 -												
10 -			7									
0	ı											
0.1	1 0.15	0.2	0.25	0.3								

Determination of Ethanol content on sample #1046; results in %V/V

			1 onnar no			
1 79.74	G(0.05)	-23.43				
83.68		-2.61				
83.893		-1.49				
84.153		-0.11				
1 84.43		1.35				
e 83.18		-5.25				
85.04		4.57				
e 85.6		7.53				
e 86.9	G(0.05)	14.40				
83.5752		-3.17				
32IVIOD 82.7		-7.79				
84.20		0.13				
e 85.47		0.84				
2						
2 n) 04 1747						
(n) 04.1747						
(1) 0.914900						
2.5020 11.09) 0.5300						
	1 79.74 83.68 83.893 84.153 83.893 84.153 1 84.43 50 83.18 85.04 85.6 9 83.5752 32Mod 82.7 84.20 85.47 ity OK 11 2 (n) 84.1747 (n) 0.914985 .) 2.5620 01:09) 0.5300	1 79.74 G(0.05) 83.68 83.893 84.153 83.893 84.153 83.893 84.153 85.04 85.04 85.04 85.6 Se 86.9 G(0.05) 83.5752 32Mod 82.7 84.20 85.47 ity OK 11 s 2 (n) 0.914985 .) 2.5620 01:09) 0.5300	1 79.74 G(0.05) -23.43 83.68 -2.61 83.893 -1.49 84.153 -0.11 1 84.43 1.35 3e 83.18 -5.25 85.04 4.57 86.9 G(0.05) 32Mod 82.7 .7.79 84.20 85.47 6.84 ity OK 11 2 (n) 84.1747 (n) 0.914985 .) 2.5620 01:09) 0.5300	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Determination of Ethanol content on sample #1046; results in %M/M

lab	method	value	mark	z(targ)	remarks
323					
340					
463	inh-01	84.36		-4.80	
494					
496	D5501	84.962		-1.62	
862	D5501	85.204		-0.34	
1017					
1033					
1047	EN1601	85.54		1.43	
1080	in house	84.28		-5.23	
1121					
1124	D5501	86.11		4.44	
1154					
1201	in house	86.0		3.86	
1251	in house	87.1	G(0.05)	9.67	
1300	D5501	84.6542		-3.25	
1706					
1727	D5501	85.16		-0.58	
1835	in house	86.42		6.08	
	normality	OK			
	normanty	10			
	outliers	10			
	mean (n)	85 2600			
	st dev (n)	0 74032			
	R(calc)	2 0729			
	R(D5501.00)	0.5300			
	1(00001.00)	0.0000			

Determination of Methanol on sample #1046; results in %V/V

				Higher		-		
lab	method	MeOH	mark	sat.alc. *)	mark	Ethers	mark	Remarks
323								
340								
463	EN13132	<0.2		<0.2		<0.2		
494								
496	EN1601	0.05		0.14		0.15		
862	D5501	0.0079						
1017								
1033								
1047	EN1601	<0.17		<0.17		0.25	С	First reported <0.17
1080				0.03		0.34		
1121								
1124	EN13132	<0.2		<0.2		0.16		
1154								
1201	in house	0.90		<0.1		0.28		
1251								
1300	EN1601	0.3164		0.0137		0.3195		
1706								
1727								
1835	in house	0.0085				0.353		
	normality	n.a.		n.a.		n.a.		
	n	5		3		7		
	outliers	0		0		0		
	mean (n)	n.a.		n.a.		n.a.		
	st.dev. (n)	n.a.		n.a.		n.a.		
	R(calc.)	n.a.		n.a.		n.a.		
	R(EN1601:97)	n.a.		n.a.		n.a.		

*) higher saturated monoalcohols (C3 - C8)

Determination of Oxygen content on sample #1046; results in %M/M

	·	_	_		-
lab	method	value	mark	z(targ)	
323					
340					
463	EN13132	29.32		-2.63	
494					
496	EN1601	29.591		-0.10	
862					
1017					
1033					
1047	EN1601	29 71		1 01	
1080	in house	29.33		-2.53	
1121	III IIOUSC	20.00		2.00	
1121	EN12122	20.02		2.07	
1124	ENTSISE	29.93		3.07	
1104	in haven			0.00	
1201	in nouse	29.89		2.69	
1251	in nouse	30.3	G(0.05)	6.52	
1300	EN1601	29.438		-1.52	
1706					
1727					
1835					
	normality	OK			
	n	7			
	outliers	1			
	mean (n)	29.601			
	st.dev. (n)	0.2526			
	R(calc.)	0.707			
	R(EN1601.97)	0.300			
		0.000			

APPENDIX 2

Number of participants per country

1 laboratory in AUSTRIA

- 2 laboratories in BELGIUM
- 1 laboratory in ESTONIA
- 2 laboratories in FRANCE
- 2 laboratories in GERMANY
 - 1 laboratory in HUNGARY
 - 1 laboratory in LATVIA
 - 1 laboratory in P.R. of CHINA
- 1 laboratory in POLAND
- 2 laboratories in SPAIN
- 1 laboratory in SWEDEN
- 2 laboratories in THE NETHERLANDS
- 2 laboratories in UNITED KINGDOM

APPENDIX 3

Abbreviations:

С	= final result after checking of first reported suspect result
D(0.01)	= outlier in Dixon's outlier test
D(0.05)	= straggler in Dixon's outlier test
G(0.01)	= outlier in Grubbs' outlier test
G(0.05)	= straggler in Grubbs' outlier test
DG(0.01)	= outlier in Double Grubbs' outlier test
DG(0.05)	= straggler in Double Grubbs' outlier test
ex	= excluded from calculations
E	= error in calculations
n.a.	= not applicable
W	= withdrawn
fr.	= first reported
U	= reported in different unit
SDS	= Safety Data Sheet

Literature:

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, January 2010
- 2 ASTM E178-02
- 3 ASTM E1301-03
- 4 ISO 5725-86
- 5 ISO 5725, parts 1-6, 1994
- 6 ISO13528-05
- 7 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 8 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 9 IP 367/84
- 10 DIN 38402 T41/42
- 11 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 12 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 13 Analytical Methods Committee Technical Brief, No4 January 2001
- 14 The Royal Society of Chemistry 2002, Analyst 2002, 127 page1359-1364, P.J. Lowthian and M. Thompson. (see <u>http://www.rsc.org/suppdata/an/b2/b205600n/</u>)
- 15 H. Verplaetse and M. Lacourt, Accred Qual Assur (2006) 11:521-522