Results of Proficiency Test Vinyl Acetate Monomer February 2012

Organised by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands

Authors:dr. R.G. VisserCorrectors:ing. R.J. Starink & ing. L.SweereReport:iis12C03

April 2012

CONTENTS

1		3
2	SET UP	3
2.1	QUALITY SYSTEM	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	3
2.4	SAMPLES	4
2.5	STABILITY OF THE SAMPLES	4
2.6	ANALYSES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	6
4	EVALUATION	7
4.1	EVALUATION PER TEST	7
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	9
4.3	EVALUATION OF THE PROFICIENCY TEST OF FEBRUARY 2012 WITH PREVIOUS PTS	10

Appendices:

1.	Data and statistical results	11
2.	Number of participants per country	24
3.	Abbreviations and literature	25

1 INTRODUCTION

Since 2007, the Institute for Interlaboratory Studies organizes a proficiency test for the analysis of Vinyl Acetate Monomer (VAM). During the annual proficiency testing program 2011/2012, it was decided to continue the round robin for the analysis of Vinyl Acetate Monomer. In this interlaboratory study 25 laboratories in 19 different countries have participated. See appendix 2 for the number of participants per country. In this report, the results of the Vinyl Acetate Monomer proficiency test are presented and discussed. This report is also electronically available through the iis internet site www.iisnl.com.

2 SET UP

The Institute for Interlaboratory studies (iis) in Spijkenisse, the Netherlands, was the organiser of this proficiency test. It was decided to send one sample only. Analyses for fit-for-use and homogeneity were subcontracted to an accredited laboratory. Participants were requested to report rounded and unrounded results. The unrounded results were preferably used for statistical evaluations.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC 17043:2010. This ensures 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of January 2010 (iis-protocol, version 3.2).

2.3 CONFIDENTIALITY STATEMENT

All data present in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

The necessary amount of bulk material of Vinyl Acetate Monomer was obtained from a chemical producer. After homogenisation, 25 litre of the Vinyl Acetate Monomer was divided over 44 brown glass bottles of 500 mL and labelled #12005.

The homogeneity of the subsamples #12005 was checked by determination of Density in accordance with ASTM D4052:11 and water in accordance with ASTM D1364:07 on 8 stratified randomly selected samples.

	Density @20°C in kg/L	Water in mg/kg
sample #12005-1	0.9322	147
sample #12005-2	0.9321	154
sample #12005-3	0.9322	147
sample #12005-4	0.9322	161
sample #12005-5	0.9322	133
sample #12005-6	0.9321	136
sample #12005-7	0.9322	140
sample #12005-8	0.9321	133

table 1: homogeneity test results of subsamples #12005

From the above test results the repeatabilities were calculated and compared with 0.3 times the corresponding reproducibilities of the target methods or with the reproducibility calculate using the Horwitz equation in agreement with the procedure of ISO 13528, Annex B2 in the next table

	Density @20°C in kg/L	Water in mg/kg
r (sample #12005)	0.00014	29
reference test	D4052:02e1	ASTM D1364:07
0.3*R (reference test)	0.00015	22

table 2: repeatabilities of subsamples #12005

The calculated repeatability for Density is in agreement with 0.3 times the corresponding reproducibility of the target method. The repeatability for Water is not in agreement with 0.3 times the corresponding reproducibility. However, the calculated repeatability for Water is in agreement with the repeatability limits of ASTM D1364:07 (r_{D1364} = 36). Therefore, homogeneity of the samples was assumed.

To each of the participating laboratories 1 bottle of 500 mL Vinyl Acetate Monomer (sample #12005) was sent on February 1, 2012.

2.5 STABILITY OF THE SAMPLES

The stability of Vinyl Acetate Monomer, packed in the brown glass bottles was checked. The material has been found stable for the period of the proficiency test

2.6 ANALYSES

The participants were asked to analyse according standard specification for VAM (ASTM D2190:07) plus additionally Acetaldehyde, Acetone, Acidity, Density @ 20°C, Distillation, Ethyl Acetate, Inhibitor, Purity and Water. To get comparable results, a detailed report form on which the units and the standard methods were printed, was sent together with each set of samples. Also a letter of instructions and a SDS were added to the package.

3 RESULTS

During four weeks after sample despatch, the results of the individual laboratories were received. The original reported results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after deadline, a reminder fax was sent to those laboratories that had not yet reported any results at that moment.

Shortly after the deadline, the available results were screened for suspect data. A result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the results. Additional or corrected results are used for data analysis and original results are placed under 'Remarks' in the result tables in appendix 1.

3.1 STATISTICS

Statistical calculations were performed as described in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' January 2010 (iis-protocol, version 3.2)

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>...' were not used in the statistical evaluation. First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation should be used with due care.

In accordance with ISO 5725 (1986 and 1994) the original results per determination were submitted subsequently to Dixon and Grubbs outlier tests. Outliers are marked by D(0.01) for the Dixon test, by G(0.01) or DG(0.01) for the Grubbs test. Stragglers are marked by D(0.05) for the Dixon test, by G(0.05) or DG(0.05) for the Grubbs test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. When the uncertainty passed the evaluation no remarks are made in the report. However, when the uncertainty failed the evaluation it is mentioned in the report and it will have consequences for the evaluation of the test results.

Finally the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualise the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are under the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle. Furthermore, Kernel Density Graphs were made. This method is for producing a smooth density approximation to a set of data that avoids some problems associated with histograms (see appendix 3; nr.13 and 14).

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the spread of this interlaboratory study. The target standard deviation was calculated from the literature reproducibility by division with 2.8.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate the fit-for-useness of the reported test result.

In case no literature reproducibility was available, other target values were used. In some cases literature repeatability is available; in other cases a reproducibility of a former iis proficiency test could be used and also the Horwitz equation can be used to estimate target reproducibility.

The z-scores were calculated according to:

 $z_{(target)} = (result - average of PT) / target standard deviation$

Absolute values for z<2 are very common and absolute values for z>3 are very rare. The usual interpretation of z-scores is as follows:

z < 1	good
1 < z <2	satisfactory
2 < z < 3	questionable
3 < z	unsatisfactory

4 EVALUATION

In this proficiency test, no serious problems were encountered with despatch of the samples. Of the 25 participants, 4 participants reported results after the final reporting date and one laboratory had not received the sample still, due to customs clearance problems.

Not all participants were able to report results for all the requested tests. In total 257 numerical test results were reported. Observed were 8 outlying test results, which is 3.1% of the total of numerical test results. In proficiency studies, outlier percentages of 3% - 7.5% are quite normal.

4.1 EVALUATION PER TEST

In this section, the reported results are discussed per test.

Unfortunately, not for all determinations a suitable standard test method exists with precision data. For these determinations, the spreads were compared against the strict spreads estimated from the Horwitz equation.

A not-normal distribution was found for Distillation (IBP, Mid Boiling Point, DP and Boiling Range). In these cases the statistical evaluation should be used with due care.

- Acidity:The acidity determination without Nitrogen purging was very problematic
and three groups of test results are visible. However the acidity
determination with Nitrogen purging was not problematic.
The results of the individual laboratories (e.g. 171, 323, 657, 855, 859,
861, 865, 902 and 1429) show that the acidity without purging will be
higher than the acidity with purging as expected. However, the average
acidity without purging. This may be explained by the group of four low test
results in the determination without purging. These four low results have
a large effect on the calculated average.
In total two statistical outliers were observed. Only the calculated
reproducibility of the determination with purging, after rejection of the
statistical outliers, is in agreement with the requirements of ASTM
D2086:08.
- <u>Appearance</u>: No analytical problems were observed. All laboratories agreed about the appearance of the sample, although different ways of reporting were used. Fourteen laboratories reported the appearance as pass in agreement with ASTM E2680. Other laboratories reported 'clear and free of suspended matter' or similar remarks.
- <u>Purity</u>: Regretfully, no reference method with precision data exists for this determination. One statistical outlier was observed. The calculated reproducibility, after rejection of the statistical outlier, is small in comparison with the spread found in the previous PT (iis11C15).

<u>Methyl Acetate</u> :	The determination of this impurity was not problematic. One statistical outlier was observed. The calculated reproducibility, after rejection of the statistical outlier, is in full agreement with the requirements estimated from the Horwitz equation
Ethyl Acetate:	The determination of this impurity was not problematic. No statistical outliers were observed. The calculated reproducibility is in full agreement with the requirements estimated from the Horwitz equation.
<u>Acetone</u> :	Ony two numerical results were reported. Therefore no significant statistical conclusions were drawn. The majority of the reporting participants agreed on a result below 10 mg/kg.
<u>Acetaldehyde</u> :	This determination may be problematic. No statistical outliers were observed and the reproducibility in agreement with ASTM D2191:06. However, the reproducibility is based upon an interlaboratory study on four samples of vinyl acetate containing 100, 200, 300,

and 500 mg/kg acetaldehyde. This range is far above the measured concentration in sample #12005 and therefore the reproducibility according to ASTMD2191:06 may not be reliable. When the Horwitz estimate for the target reproducibility is used for evaluation than this method is problematic.

Inhibitor:This determination was problematic. No statistical outliers were observed(Hydroquinone)but the calculated reproducibility is not at all in agreement with the
requirements of ASTM D2193:06

- <u>Density @ 20°C:</u> This determination is not problematic. No statistical outliers were observed and the calculated reproducibility is in good agreement with the requirements of ASTM D4052:02e1. The current version of this method ASTM D4052:11 only gives reproducibilities for the density range 0.71 g/ml to 0.88 g/ml, being valid for gasolines, distillates, basestocks and lubricating oils. Therefore this 2011 version is not applicable for VAM.
- <u>Distillation</u>: This determination was not problematic. In total two statistical outliers were observed. The calculated reproducibilities, after rejection of the statistical outliers, are all in good agreement with the requirements of ASTM D1078:11 (Auto).
- <u>Water</u>: This determination was problematic. No statistical outliers were observed. However, the calculated reproducibility is not in agreement with the calculated reproducibility with the requirements of ASTM D1364:07.

4.2 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

A comparison has been made between the reproducibility as declared by the relevant standard and the reproducibility as found for the group of participating laboratories. The assigned values, calculated reproducibilities and reproducibilities, derived from literature standards (in casu ASTM, ISO, EN standards) are compared in the next table.

Parameter	unit	n	mean	2.8 * sd	R (lit)
Acidity (without N ₂ purging)	mg/kg	18	20.3	18.3	6.0
Acidity (with N ₂ purging)	mg/kg	10	20.2	6.5	6.0
Appearance		23	pass		
Purity	%M/M	22	99.97	0.02	unknown
Methyl Acetate	mg/kg	15	6.5	1.7	2.2
Ethylacetate	mg/kg	20	167.0	32.9	34.6
Acetone	mg/kg	14	< 10	n.e.	n.e.
Acetaldehyde	mg/kg	19	31.4	25.8	80.0*
Inhibitor	mg/kg	21	4.45	2.90	1.00
Density @ 20°C	kg/L	24	0.9322	0.0002	0.0005
Initial Boiling Point	٥C	19	72.42	0.22	1.13
50% recovery	٥C	19	72.69	0.09	0.50
Dry Point	٥C	19	72.80	0.22	0.78
Boiling Range	°C	20	0.38	0.18	0.70
Water	mg/kg	23	127.2	92.0	67.7

table 3: performance evaluation sample #12005

*see §4.1 (page 8)

4.3 EVALUTION OF THE PROFICIENCY TEST OF FEBRUARY 2012 WITH PREVIOUS PTS

	February 2012	April 2011	March 2010	March 2009
Number of rep. participants	24	28	21	26
Number of results reported	257	264	201	239
Number of statistical outliers	8	16	8	10
Percentage outliers	3.1%	6.1%	4.0%	4.2%

table 4: evaluation with previous proficiency tests.

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

++

February 2012 April 2011 March 2010 March 2009 Acidity (no purging) --------Acidity (with purging) +/---------Purity n.e. n.e n.e n.e Methyl Acetate ++ -n.e ++ **Ethyl Acetate** +/----++ ++ Acetone n.e. n.e n.e n.e Acetaldehyde ++ ++ ++ ++ Inhibitor ---------Density @ 20°C ++ ++ ++ ++ Distillation ++ ++ ++ ++

The performance of the determinations of the proficiency test was compared against the requirements of the respective standards. The conclusions are given the following table:

table 5: comparison determinations against the reference standards

The performance of the determinations against the requirements of the respective standards is listed in the above table. The following performance categories were used:

+

--

++: group performed much better than the standard

-

- + : group performed better than the standard
- +/-: group performance equals the standard
- : group performed worse than the standard
- -- : group performed much worse than the standard
- n.e.: not evaluated

Water

APPENDIX 1

Determination of Acidity (without N2 purging) on sample #12005; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	D2086	19		-0.60	
173	INH-44	19		-0.60	
174	D2086	22.0		0.80	
311	D2086	11		-4.33	
323	D2086	11		-4.33	
395	INH-44	8.99		-5.27	
446	INH-44	11.7		-4.01	
522					
551					
562	D2086	26.6		2.95	
613					
657	D2086	21.43		0.53	
662					
786	D2086	23.3		1.41	
823	D2086	23		1.27	
855	D2086	20.4		0.05	
859	D2086	18.7		-0.74	
861	D2086	20.1		-0.09	
865	D2086	23.1		1.31	
902	D2086	21.9		0.75	
913					
963					
974					
1429	D2086	32.4		5.65	
7006	D2086	31.54		5.25	
	normality	OK			
	n	18			
	outliers	0			
	mean (n)	20.29			
	st.dev. (n)	6.527			
	R(calc.)	18.27			
	R(D2086:08)	6.00			
³⁵ T					
30 -					Δ Δ
-					&
20					
20		۵	۵	۵ ۵	<u> </u>
15					
10 -	Δ Δ	۵			

Δ

Determination of Acidity (with N₂ purging) on sample #12005; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	D2086	18		-1.01	
173					
174					
311					
323	D2086	5	G(0.01)	-7.08	
395					
446					
522	INH-40	21.18		0.48	
551					
562					
613	Doooc				
657	D2086	19.74	O(0,04)	-0.20	
00Z	INH-40	580	G(0.01)	201.20	
100	D2086	22		1 2 2	
023 855	D2000	23		-1.32	
850	D2000	17.5		-1.24	
861	D2000	18.4		-0.82	
865	D2086	22.1		0.02	
902	D2086	20.6		0.20	
913					
963					
974					
1429	D2086	23.7		1.65	
7006					
	normality	OK			
	n	10			
	outliers	2			
	mean (n)	20.16			
	st.dev. (n)	2.3149			
	R(calc.)	6.48			
	R(D2086:08)	6.00			

Determination of Appearance on sample #12005;

lab	method	value	mark	z(targ)	remarks
171	E2680	C&F			
173	E2680	CFSM			
174	E2680	C&F			
311	E2680	pass			
323	E2680	CFSM			
395	E2680	pass			
446	INH-500	pass			
522	INH-40	CFSM			
551					
562	E2680	pass			
613	INH-40	B&C			
657	E2680	pass			
662	E2680	B&C			
786	E2680	pass			
823	E2680	pass			
855	E2680	pass			
859	E2680	pass			
861	E2680	pass			
865	E2680	pass			
902	E2680	pass			
913	E2680	CFSM			
963	E2680	pass			
974	E2680	pass			
1429	E2680	B&C			
7006					

C&F	= Clear and free	
001		

tter
t

B&C = Bright and clear

Determination of Purity on sample #12005; results in % M/M

lab	method	value	mark	z(targ)	remarks
171	INH-256	99.967	mark		Tomarko
173	INH-47	99.98			
174	D3545	99.965			
311	INH-122	99.98			
323	INH-067	99.97			
395	INH-257	99.976			
440 522		00.08			
551	1111-40				
562	INH-001	99.96			
613	INH-40	99.972	С		first reported 99.997
657	INH-047	99.9740			
662	INH-40	99.90	G(0.01)		
823	D3545	99.90			
855	INH-1628	99.976			on drv basis
859	INH-1628	99.971			
861	INH-065	99.965			
865	INH-1628	99.966			
902	INH-22	99.969			
963	INH-009	99.97			
974	INH-03	99.972			
1429	in house	99.9635			
7006	INH-2	99.97			
	normality	OK			
	n	22			
	outliers	1			
	mean (n)	99.97033			
	st.dev. (n)	0.00583			
	R(calc.) R(target)	0.016325 unknown			Compare R(iis11C15) = 0.0298
	r (largot)				
99.985 _T					
99.98 -					
99.975 -					
99.97					
			. 🔺	▲ _	
99.965 -	۵	<u>م م</u>	Δ		
99.96 -	Δ Δ				
99.955 -					
99.95	~ ~ ~ ~ ~)	- 2 2	N 00	и и и и и и и и и и и и и и и и и и и
	56 56 142	86	86	90 32	20 70 85 82 85 82 85 85 85 85 85 85 85 85 85 85
70 -					
		r	vernei Der	isity	
60 -			Λ		
50 -					
			()		
40 -					
30					
				}	
20 -					
			1		
10 -					
	\wedge)		
0 +	/ \	•	<u> </u>		
99.8	35 99.9	9	9.95	100	
1					

Determination of Methyl Acetate on sample #12005; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	INH-256	5.6		-1.17	
173	INH-47	6.6		0.10	
174	D3545	7.0		0.61	
311	INH-122	8		1.88	
323	INH-067	<10			
395	INH-47	6.4		-0.16	
446	INH-47	6		-0.66	
522					
551					
562	INH-001	11	G(0.01)	5.69	
613					
657	INH-047	6		-0.66	
662	INH-40	7.20		0.86	
786	INH-004	<10			
823	D3545	6		-0.66	
855	INH-1628	6.6		0.10	
859	INH-1628	6.3		-0.28	
861					
865	INH-1628	6.7		0.22	
902	INH-22	6.45		-0.09	
913					
963	INH-009	7		0.61	
974					
1429	in house	<10			
7006	INH-2	6.0		-0.66	
	normality	ОК			
	n	15			
	outliers	1			
	mean (n)	6.52			
	st.dev. (n)	0.607			
	R(calc.)	1.699			
	R(Horwitz)	2.20			
	```				
12 -					





## Determination of Ethyl Acetate on sample #12005, results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	INH-256	173.3		0.51	
173	INH-47	163.6		-0.28	
174	D3545	191.0		1.94	
311	INH-122	180	С	1.05	first reported 195
323	INH-067	149		-1.46	
395	INH-47	176.9		0.80	
446	INH-47	162		-0.41	
522					
551					
562	INH-001	169		0.16	
613					
657	INH-047	170		0.24	
662	INH-40	166.92		-0.01	
786	INH-004	187		1.61	
823	D3545	164		-0.24	
855	INH-1628	166.8		-0.02	
859	INH-1628	167.0		0.00	
861					
865	INH-1628	175		0.64	
902	INH-22	158.6		-0.68	
913					
963	INH-009	163		-0.33	
974	INH-03	143	С	-1.94	first reported 129
1429	in house	152.4		-1.18	
7006	INH-2	162.0		-0.41	
	Pr	01/			
	normality				
	n outliere	20			
		0			
	mean (n)	167.03			
	SLOEV. (II)	11.700			
	R(Calc.)	32.94			
		34.03			
210 T -					
200 +					
190					Δ
180 -					Δ
170 -					
160 -			Δ Δ	Δ Δ	
150 -	<u>م</u>	4			
140					
130					



120 - <u>76</u>

# Determination of Acetone on sample #12005; results in mg/kg

lab	method	value	mark	z(targ)	remarks	
171	INH-256	<10				
173	INH-47	<0.01				
174	D3545	<5				
311	INH-122	0.3				
323	INH-067	<10				
395						
446						
522						
551						
562	INH-001	<10				
613						
657	GC	<10				
662	INH-40	n.d.				
786	INH-004	<10				
823	D3545	<5				
855	INH-1628	<10				
859	INH-1628	<10				
861						
865	INH-1628	<10				
902	INH-22	99.52			false positive?	
913						
963	INH-009	<5				
974						
1429	in house	<10				
7006						
	normality	n.e.				
	n	14				
	outliers	1				
	mean (n)	<10				
	st.dev. (n)	n.e.				
	R(calc.)	n.e.				
	R(Horwitz)	n.e.				

## Determination of Acetaldehyde on sample #12005; results in mg/kg

lab	method	value	mark	z(targ)	rem	arks									
171	INH-256	28.5		-0.10											
173	INH-47	28.6		-0.10											
174															
311	INH-122	34		0.09											
323	INH-067	22		-0.33											
395	INH-47	37.9		0.23											
446															
522	INH-40	10.9		-0.72											
551															
562	INH-001	30		-0.05											
613															
657	D2191	38.27		0.24											
662	INH-40	51.77		0.71											
786	INH-004	32		0.02											
823	D2191	30		-0.05											
855	D2191	38		0.23											
859	D2191	33		0.06											
861	INH-065	26		-0.19											
865	D2191	38		0.23											
902	INH-22	25.18		-0.22											
913															
963	D2191	30		-0.05											
974															
1429	in house	18.2		-0.46											
7006	INH-2	44.0		0.44											
	normality	OK													
	n	19													
	outliers	0													
	mean (n)	31.39													
	st.dev. (n)	9.228													
	R(calc.)	25.84													
	R(D2191:06)	80.00			Con	npare F	R(Horwit	tz) = 8	.37						
140 -															
120 -															
100 +															
-															
00 T															
60 -															
															Δ
40 -										۵	۵	۵	Δ	<b>A</b>	
		<u>م</u>	Δ	Δ Δ	Δ	Δ	Δ	A	Δ						
20 +	Δ Δ														
522	323	902	171	823	963	562	786	859	311	395	865	855	657	900	662
	÷ "			-	•		• •	-			-		-	К	-
	0.05														
	-0.05 -														



# Determination of Inhibitor (Hydroquinone) on sample #12005; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	D2193	5.2		2.11	
173	INH-43	5.7		3.51	
174	D2193	5.0		1.55	
311	D2193	3.9		-1.53	
323	D2193	5.3		2.39	
395	INH-43	5.04		1.66	
446					
522	INH-40	3.5		-2.65	
551					
562	D2193	3.39		-2.96	
613	INH-40	3.13		-3.69	
657	D2193	4.0		-1.25	
662					
786	D2193	3.9		-1.53	
823	D2193	6.2		4.91	
855	D2193	4.62		0.48	
859	D2193	4.26		-0.53	
861	D2193	4.11		-0.95	
865	D2193	4.55		0.29	
902					
913	D2193	4.1		-0.97	
963	D2193	2.7		-4.89	
974	D2193	3.21		-3.47	
1429	D2193	6.75		6.45	
7006	D2193	4.84		1.10	
	normality	ОК			
	n	21			
	outliers	0			
	mean (n)	4,447			
	st.dev. (n)	1.0366			
	R(calc.)	2 903			
	R(D2193:06)	1.000			





# Determination of Density @ 20 °C on sample #12005; results in kg/L

lab	method	value	mark z(ta	rg)	remarks
171	D4052	0.9323	0	.60	
173	D4052	0.93218	-0	.07	
174	D4052	0.9322	0	.04	
311	D4052	0.93218	-0	.07	
323	D4052	0.9321	-0	.52	
395	D4052	0.9321	-0	.52	
446	D4052	0.9320	-1	.08	
522	INH-40	0.9324	1	.16	
551			-		
562	D4052	0.9322	0	.04	
613	D4052	0.93224	0	.27	
657	D4052	0.9321	-0	.52	
662	D4052	0.9322	0	.04	
786	D4052	0.9321	-0	.52	
823	D4052	0.9322	0	.04	
855	D4052	0.93216	-0	.18	
859	D4052	0.93222	0	.16	
861	D4052	0.93215	-0	.24	
865	D4052	0.93224	0	.27	
902	D4052	0.93224	0	.27	
913	D4052	0.9322	0	.04	
963	D4052	0.9322	0	.04	
974	D4052	0.9323	0	.60	
1429	D4052	0.9322	0	.04	
7006	D4052	0.9322	0	.04	
	normality	OK			
	n	24			
	outliers	0			
	mean (n)	0.93219			
	st.dev. (n)	0.000080			
	R(calc.)	0.00023			
	R(D4052:02e1)	0.00050			
0.0220					
0.9329					
0.9327 -					
0.0225					





# Determination of Distillation on sample #12005; results in °C

lab	method	IBP	mark	50% rec.	mark	DP mark	range	mark
171	D1078	72.4		72.7		72.7	0.3	
173	D1078	72.5		72.7		72.8	0.3	
174	D1078	72.4	С	72.7		72.9	0.5	С
311	D1078	72.5		72.7		72.8	0.3	
323	D1078	72.5		72.7		72.9	0.4	
395	D1078	72.5		72.7		72.9	0.4	
446	INH-45	72.4		72.7		72.8	0.4	
522								
551								
562	D1078	72.2		72.6		72.6	0.4	
613								
657	D1078	72.5		72.7		72.9	0.4	
662								
786	D1078	72.4		72.6		72.7	0.3	
823	D1078	72.4		72.7		72.8	0.4	
855	D1078	72.5		72.7		72.8	0.3	
859	D1078	72.5		72.7		72.8	0.3	
861	D1078	72.4		72.7		72.8	0.4	
865	D1078	72.4		72.7		72.8	0.4	
902	D1078	72.4		72.7		72.8	0.4	
913		72.4		72.7		72.8	0.4	
963	D1078	72.3		72.7		72.8	0.5	
974								
1429	D1078	72.4		72.7		72.7	0.3	
7006	D86	71.8	G(0.01)	72.1	G(0.01)		0.4	
	normality	not OK		not OK		not OK	not OK	
	n	19		19		19	20	
	outliers	1		1		0	0	
	mean (n)	72.421		72.689		72.795	0.375	
	st.dev. (n)	0.0787		0.0315		0.0780	0.0639	
	R(calc.)	0.220		0.088		0.218	0.179	
	R(D1078:11-A)	1.130		0.496		0.779	0.696	

 *  laboratory 174 first reported 72.2 / 72.7 / 72.9 / 0.7

#### z-scores of distillation

lab	IBP	50% rec	DP	range
171	-0.05	0.06	-0.34	-0.30
173	0.20	0.06	0.02	-0.30
174	-0.05	0.06	0.38	0.50
311	0.20	0.06	0.02	-0.30
323	0.20	0.06	0.38	0.10
395	0.20	0.06	0.38	0.10
446	-0.05	0.06	0.02	0.10
522				
551				
562	-0.55	-0.50	-0.70	0.10
613				
657	0.20	0.06	0.38	0.10
662				
786	-0.05	-0.50	-0.34	-0.30
823	-0.05	0.06	0.02	0.10
855	0.20	0.06	0.02	-0.30
859	0.20	0.06	0.02	-0.30
861	-0.05	0.06	0.02	0.10
865	-0.05	0.06	0.02	0.10
902	-0.05	0.06	0.02	0.10
913	-0.05	0.06	0.02	0.10
963	-0.30	0.06	0.02	0.50
974				
1429	-0.05	0.06	-0.34	-0.30
7006	-1.54	-3.32		0.10



ibp



mid point (50% rec.)



dry point



distillation range

## Determination of Water on sample #12005; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	E203	114		-0.55	
173	E203	91.0		-1.50	
174	D1364	121		-0.26	
311	D1364	170		1.77	
323	D1364	170		1.77	
395	D1364	98.41		-1.19	
446	INH-63	133		0.24	
522	INH-40	143.22		0.66	
551					
562	E203	177		2.06	
613					
657	E1064	143		0.65	
662	INH-40	150		0.94	
786	D1364	136		0.36	
823	D1364	117		-0.42	
855	D1364	104		-0.96	
859	D1364	94		-1.37	
861	E1064	91		-1.50	
865	D1364	104		-0.96	
902	D1364	90		-1.54	
913	D1364	180	С	2.18	reported in a different unit 0.018
963	D1364	103		-1.00	
974	D1364	126		-0.05	
1429	D1364	188		2.52	
7006	D1364	82.0		-1.87	
	normality	ОК			
	n	23			
	outliers	0			
	mean (n)	127.20			
	st.dev. (n)	32.839			
	R(calc.)	91.95			
	R(D1364:07)	67.67			





#### **APPENDIX 2**

#### Number of participants per country

- 1 lab in AUSTRALIA
- 1 lab in BELGIUM
- 1 lab in BRAZIL
- 1 lab in CHILE
- 1 lab in INDIA
- 1 lab in IRAN
- 1 lab in ITALY
- 1 lab in KOREA
- 1 lab in MEXICO
- 4 labs in P.R. of CHINA
- 1 lab in RUSSIA
- 1 lab in SAUDI ARABIA
- 1 lab in SINGAPORE
- 1 lab in THAILAND
- 1 lab in THE NETHERLANDS
- 1 lab in TURKEY
- 1 lab in U.A.E.
- 3 labs in U.S.A.
- 2 labs in UNITED KINGDOM

# **APPENDIX 3**

#### Abbreviations:

С	= final result after checking of first reported suspect result
-	

- D(0.01) = outlier in Dixon's outlier test
- D(0.05) = straggler in Dixon's outlier test
- G(0.01) = outlier in Grubbs' outlier test
- G(0.05) = straggler in Grubbs' outlier test
- DG(0.01) = outlier in Double Grubbs' outlier test
- DG(0.05) = straggler in Double Grubbs' outlier test
- E = error in calculations
- ex = excluded from calculations
- n.e. = not evaluated
- wd = withdrawn method

### Literature:

- 1 i.i.s. Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, January 2010
- 2 ASTM E178:89
- 3 ASTM E1301:89
- 4 ISO 5725:86
- 5 ISO 5725, parts 1-6, 1994
- 6 ISO13528-05
- 7 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 8 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 9 IP 367:84
- 10 DIN 38402 T41/42
- 11 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 12 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 13 Analytical Methods Committee Technical brief, No4 January 2001
- 14 The Royal Society of Chemistry 2002, Analyst 2002, 127 page 1359-1364, P.J. Lowthian and M. Thompson (see http://www.rsc.org/suppdata/an/b2/b205600n/)