Results of Proficiency Test AZO dyes in leather March 2015

Organised by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands

Authors:ing. R.J. StarinkCorrectors:ing. N. Boelhouwer & dr. R.G. VisserReport:iis15A02L

May 2015

CONTENTS

1		3
2	SET UP	3
2.1	ACCREDITATION	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	4
2.4	SAMPLES	4
2.5	ANALYSES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	6
4	EVALUATION	7
4.1	EVALUATION PER SAMPLE	7
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	8
5	COMPARISON WITH PREVIOUS INTERLABORATORY STUDIES	8
6	DISCUSSION	8

Appendices:

1.	Data and statistical results	. 9
2.	Summary of other reported aromatic amines	12
3.	Analytical details	13
4.	Number of participants per country	16
5.	Abbreviations and literature	17

1 INTRODUCTION

The Institute for Interlaboratory Studies (iis) organizes every year a proficiency test for banned AZO dyes in leather since 1997, with an exception in 2009. During the annual proficiency testing program 2014/2015, it was decided to continue the round robin for the analysis of banned AZO dyes in leather. In this interlaboratory study, 158 laboratories in 31 different countries have participated (see appendix 4). In this report, the results of the 2015 proficiency test are presented and discussed. This report is also electronically available through the iis internet site www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies in Spijkenisse was the organizer of this proficiency test. Due to lack of a sufficient amount of suitable materials it was decided to use in this proficiency test only one leather sample. This leather sample was especially dyed with Acid Red 114 to find 3,3'-Dimethylbenzidine by an Italian company. Sample analyses for fit-for-use and homogeneity testing were subcontracted to an accredited third party laboratory. Participants were requested to report rounded and unrounded test results. These unrounded test results were preferably used for statistical evaluation. The participants were asked to report the analytical results using the indicated units on the report form.

2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC 17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This PT falls under the accreditation scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentially of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires

2.2 PROTOCOL

The protocol followed in the organization was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organization, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3). This protocol can be downloaded from the iis website http://www.iisnl.com.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

A suitable pink coloured leather sample (coloured with Acid Red 114), positive on AZO dyes, was made available by an Italian company. After cutting it into small pieces of <0.1g, the material was mixed thoroughly. In total 160 sub samples were prepared of 3 gram leather each and subsequently labelled #15022. Eight stratified randomly selected samples were tested using ISO17234-1 to check the homogeneity of the batch. See the following table for the test results.

	3,3'-Dimethylbenzidine in mg/kg
sample #15022-1	121.2
sample #15022-2	135.2
sample #15022-3	119.3
sample #15022-4	127.5
sample #15022-5	122.7
sample #15022-6	131.8
sample #15022-7	123.6
sample #15022-8	126.3

Table 1: homogeneity test results of subsamples #15022

From the above test results, the repeatability was calculated and compared with 0.3 times the corresponding reproducibility in agreement with the procedure of ISO13528, Annex B2, in the next table:

	3,3'-Dimethylbenzidine in mg/kg
r (observed)	15.2
reference method	ISO17234-1:2010
0.3 x R (reference method)	21.3

Table 2: evaluation of the repeatability of subsamples #15022

The repeatability of the results of homogeneity test for 3,3'-Dimethylbenzidine was in agreement with 0.3 times the estimated reproducibility mentioned in the reference method ISO17234-1:2010.

Therefore, homogeneity of the subsamples was assumed.

One sample with approx. 3.0 grams (labelled #15022) testing material was sent to each of the participating laboratories on March 4, 2015.

2.5 ANALYSES

The participants were requested to determine the concentrations of 23 forbidden aromatic amines and *o*-anisidine, applying the analysis procedure that is routinely used in the laboratory. To get comparable results reported, a detailed report form, on which the requested amines and the units were pre-printed, was sent together with each sample. Also a letter of instructions was sent along.

3 RESULTS

During four weeks after sample despatch, the results of the individual laboratories were gathered. The original data are tabulated in the appendices of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder fax was sent to those laboratories that had not yet reported. Shortly after the deadline, the available results were screened for suspect data. A result was called suspect in case the Huber Elimination Rule (a robust outlier test, see lit.5) found it to be an outlier. The laboratories that produced these suspect data were asked to check the results. Additional or corrected data are placed under 'Remarks' in the result tables in appendix 1. A list of abbreviations used in the tables can be found in appendix 5.

3.1 STATISTICS

Statistical calculations were performed as described in the report 'iis Interlaboratory Studies: Protocol for the Organization, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3)

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>..." were in general not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation of the results should be used with due care.

In accordance to ISO 5725 (1986 and 1994) the original results per determination were submitted subsequently to Dixon and Grubbs outlier tests. Outliers are marked by D(0.01) for the Dixon test, by G(0.01) or DG(0.01) for the Grubbs test and by R(0.01) for the Rosner General ESD test (see appendix 5, no.15). Stragglers are marked by D(0.05) for the Dixon test, by G(0.05) or DG(0.05) for the Grubbs test and by R(0.05). Both outliers and stragglers were not included in the calculations of the averages and the standard deviations.

For each assigned value, the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. When the uncertainty passed the evaluation, no remarks are made in the report. However, when the uncertainty failed the evaluation it is mentioned in the report and it will have consequences for the evaluation of the test results.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualise the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are under the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms (see appendix 5; nos.13 and 14). Also a normal Gauss curve was projected over the Kernel Density Graph.

3.3 Z-SCORES

To evaluate the performance of the individual participating laboratories the z-scores were calculated. In order to be able to have an objective evaluation of the performance of the individual participants, it was decided to evaluate this performance against the literature requirements. Therefore the z-scores were calculated using a target standard deviation. This target standard deviation was calculated from the literature reproducibility by division with 2.8.

The z_(target)-scores were calculated according to:

 $z_{(target)} = (individual result - average of proficiency test) / target standard deviation$

The $z_{(target)}$ -scores are listed in the result tables in appendix 1.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate the fit-for-useness of the reported test result.

Absolute values for z < 2 are very common and absolute values for z > 3 are very rare. The usual interpretation of z-scores is as follows:

|z| < 1 good 1 < |z| < 2 satisfactory 2 < |z| < 3 questionable 3 < |z| unsatisfactory

4 EVALUATION

During the execution of this proficiency test some reporting problems occurred. Thirty-two participants reported test results after the deadline and six participants did not report any test results. Finally, 152 participants did report 147 numerical test results for the aromatic amine present (3,3'-Dimethylbenzidine), while another 15 test results were reported for other aromatic amines. Observed were 3 outlying test results, which is 2.0% of the numerical test results. In proficiency studies, outlier percentages of 3% - 7.5% are quite normal.

The data set of 3,3'-Dimethylbenzidine did proof to have a normal Gaussian distribution.

4.1 EVALUATION PER COMPONENT

In this section, the results are discussed per sample. All statistical results reported for 3,3'-Dimethylbenzidine are summarised in appendix 1 and the reported test results of all other aromatic amines are listed in appendix 2.

- <u>3,3'-Dimethylbenzidine:</u> The determination of this aromatic amine at a concentration level of 82 mg/kg was somewhat problematic. Three statistical outliers were observed. Three other participants reported "< 5 mg/kg", which is a false negative test result and one participant did not report a test result for 3,3'-Dimethylbenzidine but for six other aromatic amines. The test results reported by the participants vary from <5 131.5 mg/kg. The observed reproducibility after rejection of the statistical outliers is almost in agreement with the reproducibility requirement of 56.4% estimated from the standard test method ISO 17234-1:2010.
- <u>General:</u> Seven participants reported the presence of other aromatic amines at various concentration levels, see appendix 2. All laboratories, except five (5) laboratories, would have rejected this leather sample for containing too much of a banned aromatic amine (according to OEKO-TEX Std 100 ed. 04/2013 of 20 mg/kg).

4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the reproducibility as declared by the relevant standard methods (references 1 - 4) and the reproducibilities as found for the group of participating laboratories.

The number of significant test results, the average result, the calculated reproducibility (standard deviation*2.8) and the target reproducibility, derived from the official test method ISO17234-1:2010 (equal to the reproducibility from LMBG 82.02.3:97) are presented in the next table.

Parameter	unit	n	Average	2.8 * sd	R(target)
3,3'-Dimethylbenzidine	mg/kg	145	81.8	54.0	46.1

Table 3: reproducibility of the aromatic amine in leather sample #15022

Without further statistical calculations, it can be concluded that the group of participating laboratories has some problems with the analysis of 3,3'-Dimethylbenzidine in leather. See also the discussion in paragraphs 4.1 and 6.

5 COMPARISON WITH PREVIOUS INTERLABORATORY STUDIES

The observed spread in the test results for the aromatic amine in the 2014 PT is in good agreement in comparison with the spread of the aromatic amine as observed in the previous PTs, see below table.

Parameter	March	ISO17234-1:							
	2015	2014	2013	2012	2011	2010	2008	2007	2010
4-Aminodiphenyl	n.e.	n.e.	n.e	25%	n.e.	n.e.	n.e.	n.e.	Unknown
Benzidine	n.e.	20%	28%	20%	n.e.	n.e.	38%	45%	12 – 25%
3,3'-Dimethylbenzidine	24%	n.e.	n.e	n.e.	n.e.	n.e.	n.d.	45%	17 – 24%
o-Toluidine	n.e.	n.e.	n.e.	n.e.	n.e.	n.e.	50%	n.e.	30– 37%
2,4-Xylidine	n.e.	n.e.	36%	n.e.	19%	16%	n.e.	n.e.	n.e.

Table 4: development of the uncertainties over the years

6 DISCUSSION

From the reported test methods it appeared that almost all participants treated the leather samples according identical test methods: ISO17234-1 or LFBG 82.02.3.

No correlation could be found between the details of the sample preparation as reported by the laboratories and the test results. Therefore, it can be concluded that the observed spread in this interlaboratory study is not caused by just one critical point in the analysis. Each participating laboratory will have to evaluate its performance in this study and decide about any corrective actions if necessary.

Determination of 3,3'-Dimethylbenzidine (CASno.119-93-7) in sample #15022; results in mg/kg

lab	method	value	mark	z(targ)	remarks
110	ISO17234-1	57.6		-1.47	
213					
230	ISO17234-1	76.3		-0.34	
348	in house	107.37		1.55	
362	IN NOUSE	<5.0		<-4.66 1 77	Faise negative test result?
622	ISO17234-1	<5	C	<-4.66	First reported 13 False pedative test result?
623	ISO17234-1	92.15	0	0.63	
840	ISO17234-1	94.8		0.79	
2102		6.87	R(0.05)	-4.55	
2115	ISO17234-1	19.03	R(0.05)	-3.81	
2121	ISO17234-1	67.51		-0.87	
2129	15017234-1	125		2.62	
2132	13017234-1			-0.00	
2139	ISO17234-1	56.5		-1.54	
2146	ISO17234-1	62.0		-1.20	
2165	ISO17234-1	89		0.44	
2166	EN14362	36.1		-2.77	
2169	10017024 4				
2170	ISO17234-1 ISO17234-1	00.0 77 /		-0.30	
2172	ISO17234-1	118.5		2.23	
2184	ISO17234-1	90		0.50	
2190	ISO17234-1	66.1		-0.95	
2201	ISO17234-1	103.4		1.31	
2213	ISO17234-1	109	С	1.65	First reported 149.2
2215	ISO17234-1	90.2		0.51	
2232	ISO17234-1 ISO17234-1	48.65		-2.01	
2230	ISO17234-1	89.0		0.12	
2246	ISO17234-1	73.39		-0.51	
2247	ISO17234-1	95.44	С	0.83	First reported 146.37
2255	ISO17234-1	83.9		0.13	
2256	ISO17234-1	59.7		-1.34	
2284	ISO17234-1	76		-0.35	
2209	ISO17234-1 ISO17234-1	109.4		1.07	
2290	ISO17234-1	111.9		1.82	
2295	ISO17234-1	70		-0.72	
2296	ISO17234-1	71.43		-0.63	
2297	ISO17234-1	92.7		0.66	
2300	64LFGB82.02.3	40.0		-2.54	
2301	ISO17234-1 ISO17234-1	58.8 81.6		-1.40	
2311	ISO17234-1	86.5		0.28	
2314	ISO17234-1	79.4		-0.15	
2330	ISO17234-1	83.62		0.11	
2347	ISO17234-1	94		0.74	
2350	ISO17234-1	70		-0.72	
2352	ISO17234-1 ISO17234-1	90 87 4		0.50	
2358	ISO17234-1	84 7		0.34	
2364	ISO17234-1	86		0.25	
2365	ISO17234-1	91		0.56	
2366	ISO17234-1	91		0.56	
2367	ISO17234-1	83.4		0.10	
2368	15017234-1	80.0		-0.11	
2303	ISO17234-1	93.8		0.73	
2373	ISO17234-1	83.9		0.13	
2375	ISO17234-1	89.2		0.45	
2379	ISO17234-1	57.671		-1.47	
2380	ISO17234-1	90.8		0.54	
2386	EN14362	50.7		-1.89	
2309 2300	ISO17234-1 ISO17234-1	103.00		1.33	
2403	ISO17234-1	84.5		0.16	
2410	ISO17234-1	76		-0.35	
2413					reported 6 other amines, see appendix 2
2415	ISO17234-1	83.2		0.08	
2426	15017234-1	97.1015		0.93	
Z4Z9	13017234-1	100.20		1.11	

2432 2437 2440 2442 2449	ISO17234-1 ISO17234-1 ISO17234-1 in house ISO17234-1	115.75 82.3 70.6 69.91 63.54	С	2.06 0.03 -0.68 -0.72 -1.11	First reported 168.8
2452 2455	ISO17234-1 ISO17234-1	62.89 16.44	C,R(0.05)	-1.15 -3.97	First reported 10
2459 2467 2472	in house in house ISO17234-1	102.20 116.05 73	С	1.24 2.08 -0.54	First reported 175.60
2476 2479	ISO17234-1 ISO17234-1	92.6 100.0		0.65 1.10	
2481 2482	ISO17234-1 ISO17234-1	62.8 71.512		-1.15 -0.63	
2488	ISO17234-1	56.73		-1.52	
2489 2492	INHOUSE	49.4		-1.97	
2495 2496	ISO17234-1 ISO17234-1	90.4 76.0		0.52 -0.35	
2497	ISO17234-1	105.17		1.42	
2499 2504	ISO17234-1	55.26		-1.61	
2511 2514	ISO17234-1 ISO17234-1	85.9 85.10		0.25	
2515	ISO17234-1	52.06		-1.81	
2516	ISO17234-1	65.5		-0.99	
2532 2534	ISO17234-1 ISO17234-1	99.2		2.07 1.05	
2536	ISO17234	62		-1.20	
2538	64LFGB82.02.3	82.5 66.25		0.04	
2560	ISO17234-1	<5		<-4.66	False negative test result?
2562	GB/T19942	96.6		0.90	-
2563	ISO17234-1 ISO17234-1	87.28 61.5		0.33	
2566	ISO17234-1	62		-1.20	
2567	ISO17234-1	74.64		-0.44	
2572	ISO17234-1 ISO17234-1	90 42.03		-2.41	
2592	ISO17234-1	50.76		-1.88	
2593	ISO17234-1	79.6 81.2		-0.13	
2614	CPSD-AN-00017	62		-1.20	
2618	ISO17234-1	92.30		0.64	
2629 2639	GB/T19942	55.21 54.3		-1.61	
2643	ISO17234-1	84		0.13	
2649 2654	ISO17234-1	95.07 86.70		0.80	
2656	100172341				
2658	19017234-1	 81 2		-0.04	
2674	ISO17234-1	91.2		0.56	
2675	ISO17234-1	71.58		-0.62	
2677	ISO17234-1 ISO17234-1	46.21 83		-2.16	
3110	ISO17234-1	71.9		-0.60	
3116	ISO17234-1	88.44 82		0.40	
3118	ISO17234-1	75.82		-0.36	
3146	ISO17234-1	120		2.32	
3150 3151	ISO17234-1 ISO17234-1	95.5 55.0		0.83	
3153	ISO17234-1	98		0.98	
3154	DIN53316	45.75	С	-2.19	First reported 166.90
3172	ISO17234-1	95.0 67		-0.90	
3176	ISO17234-1	67.94		-0.84	
3185	ISO17234-1 ISO17234-1	83 88 96		0.07	
3191	ISO17234-1	86		0.25	
3197	ISO17234-1	96.3		0.88	
3210	ISO17234-1	48.7		-2.10	
3214	ISO17234-1	102.77		1.27	
3216 3218	ISO17234-1 ISO17234-1	118.17 84		2.21 0.13	

3220	ISO17234-1	80.5		-0.08	
3222	ISO17234-1	74.63	С	-0.44	First reported 26.80
3225	ISO17234-1	80.1		-0.10	
3228	ISO17234-1	92		0.62	
3237	in house	127.5795		2.78	
3242	ISO17234-1	80		-0.11	
3246	ISO17234-1	89.5		0.47	
3248	ISO17234-1	89		0.44	
	normality	OK			
	n	145			
	outliers	2			
	mean (n)	81.825			
	st.dev. (n)	19.2791			
	R(calc.)	53.981			
	D(10017001110)	10 1 10			

Summary of other reported aromatic amines

lab	aromatic amines
2102	2.70 mg/kg Benzidine; 3.08 mg/kg 3.3'-Dimethoxybenzidine
2115	7.40 mg/kg 2,4-Diaminotoluene
2413	32.06 mg/kg 4-Chloro-o-toluidine; 6.10 mg/kg o-Aminoazotoluene; 32.08 mg/kg 2-Amino-4-nitrotoluene; 310.38 mg/kg 4,4'-Diaminodiphenylether; 9.73 mg/kg 2,4-Diaminotoluene; 5,050 mg/kg o-Anisidine
2497	1.73 mg/kg o-Toluidine
2534	9.5 mg/kg 4-Aminoazobenzene
2563	2.88 mg/kg o-Aminoazotoluene

2675 12.03 mg/kg p-Cresidine; 15.37 mg/kg o-Toluidine; 22.77 mg/kg 2,4-Xylidene

Analytical details

Lab	Degreasing colvent	Main evaporation of column	evanoration tomo	Final evaporation of column
110	n-bevano	Vacuum Rotory Evoporator		weak flow of iport and (N2)
212			40 	weak now of ment gas (NZ)
213 230	n-hevane	 Overnight in Europhood		
230	n-hevane	In oven for 1 br	40	
362	n-hexane	Decant and evanorate overnight		
551	Fthylacetate			
622	n-hevane	Vacuum Rotary Evaporator	50	
623	n-hexane	weak flow of inert das		
840	n-hexane	weak flow of inert gas		
2102	n-hexane	air drving 2 days		
2115	n-hexane	Vacuum Rotary Evaporator	50	
2121	n-hexane	speed extractor "buchi"		weak flow of inert gas (N2)
2129	n-hexane	weak flow of inert gas		
2132	n-hexane	weak flow of inert gas		
2137				
2139	n-hexane	Vacuum Rotary Evaporator	50	weak flow of inert gas (N2)
2146	n-hexane	Vacuum Rotary Evaporator	35-36	weak flow of inert gas (N2)
2165	n-hexane	weak flow of inert gas		
2166		Vacuum Rotary Evaporator	40	weak flow of inert gas (Ar)
2169				
2170	n-hexane	Vacuum Rotary Evaporator	35	
2172	n-hexane	Vacuum Rotary Evaporator	40	
2173	n-hexane	weak flow of inert gas	46	
2184	n-hexane	Vacuum Rotary Evaporator	45	
2190	n-hexane	Vacuum Rotary Evaporator	50	
2201	n-hexane	Vacuum Rotary Evaporator	40	weak flow of inert gas (N2)
2213	n-hexane	Vacuum Rotary Evaporator	50	weak flow of inert gas (N2)
2215	n-hexane	Vacuum Rotary Evaporator	40	
2232	n-hexane	Vacuum Rotary Evaporator	40	
2238	n-hexane	Vacuum Rotary Evaporator	40	
2241	n-hexane	Vacuum Rotary Evaporator	40	
2240	MIBE	Vacuum Rotary Evaporator	40	
2247	n-nexane	Vacuum Rotary Evaporator	40	
2200	n-nexane	Vacuum Rolary Evaporator	50	weak now of ment gas (N2)
2200		Vacuum Rotary Evaporator	40	
2204	NIIDE	wook flow of inort gos (N2)	40	
2209	n-hevene	Vacuum Rotary Evaporator		
2230	n-hevene	Vacuum Rotary Evaporator	40	
2291	n-hevane	Vacuum Rotary Evaporator	40 50	
2296	n-hexane	Vacuum Rotary Evaporator	70	weak flow of inert gas (N2)
2297	n-hexane	Vacuum Rotary Evaporator	45	weak flow of inert gas (N2)
2300	n-hexane	weak flow of inert gas (N2)		
2301	n-hexane	Vacuum Rotary Evaporator	40	
2310	n-hexane			
2311	n-hexane			
2314	n-hexane	Vacuum Rotary Evaporator	50	
2330	MTBE	Vacuum Rotary Evaporator	40	weak flow of inert gas (N2)
2347	n-hexane	Evaporated Overnight		
2350	MTBE	Vacuum Rotary Evaporator	50	
2352	n-hexane	Vacuum Rotary Evaporator	<50	
2357	n-hexane	Vacuum Rotary Evaporator	70	
2358	n-hexane	Vacuum Rotary Evaporator	30	
2364	n-hexane	Vacuum Rotary Evaporator	45	
2365	n-hexane	Vacuum Rotary Evaporator	40	
2366	n-hexane	Vacuum Rotary Evaporator	45	
2367	n-hexane	Vacuum Rotary Evaporator	40	
2368	n-hexane	Vacuum Rotary Evaporator	45	weak flow of inert gas (N2)
2369	n-hexane	Vacuum Rotary Evaporator	40	
2370	n-hexane	Vacuum Rotary Evaporator	40	
2373	n-hexane	Vacuum Rotary Evaporator	45	weak flow of inert gas (N2)
2375	n-hexane	Fumehood		
2379	n-hexane	Vacuum Rotary Evaporator	50	
2380	n-hexane	Vacuum Rotary Evaporator	70	
2386	n-hexane	I urbo Vaporisation		
2389	n-hexane	screening method		
2390	n-nexane			
2403		Vacuum Rotary Evaporator	4U 20	
2410			3U 40	
2413 2/15	n-hexane	Vacuum Rotary Evaporator	40 45	
2410	n-hexane	vacuum Rolary Evaporator	40	weak now of ment gas (NZ)
2420 2120	n-hexane	Weak now of ment gas (NZ)		
2429	II-IIEXAIIE	vacuum rolary Evaporalor	4 0	

2432	n-hexane			
2437	n-hexane	Vacuum Rotary Evaporator	45	weak flow of inert cas (N2)
2437	n hovano	Vacuum Potany Evaporator	1 5 25	weak flow of inert gas (N2)
2440	n-nexane	vacuum Rolary Evaporator	30	weak now of ment gas (NZ)
2442	n-hexane			
2449	n-hexane	Vacuum Rotary Evaporator	50	weak flow of inert gas (N2)
2452	n-hexane	weak flow of inert gas (N2)		
2455	n-hexane	Vacuum Rotary Evaporator	45	weak flow of inert gas (N2)
2459	n-hexane	Vacuum Rotary Evaporator	40	5 ()
2467	n-hevane	Vacuum Rotary Evaporator	40	
2407	n hoveno	Vacuum Rotary Evaporator	20	wook flow of iport goo (N2)
2472	II-IIexane		30	weak now of ment gas (NZ)
2476	n-hexane	Vacuum Rotary Evaporator	50	
2479	n-hexane	Vacuum Rotary Evaporator	46	weak flow of inert gas (N2)
2481	n-hexane	weak flow of inert gas (N2)		
2482	n-hexane	weak flow of inert gas (N2)		
2488	n-hexane	Vacuum Rotary Evaporator	40	weak flow of inert gas (N2)
2/80	n-beyane	Vacuum Rotary Evaporator	10	
2403			40	
2492	n-nexane			
2495	n-hexane	Overnight evaporation		
2496	n-hexane	Vacuum Rotary Evaporator	40	
2497	n-hexane	Vacuum Rotary Evaporator	40	
2499				
2504				
2004	n hovene	Voouum Botony Evoporator	25	
2011	II-IIexane		30	
2514	n-nexane	vacuum Rotary Evaporator	45	
2515				
2516		Vacuum Rotary Evaporator	35	
2532	n-hexane	Vacuum Rotary Evaporator	35	
2534	MTBE	Vacuum Rotary Evaporator	30	
2536	n-hevane	Vacuum Rotary Evaporator	70	weak flow of inert gas (N2)
2000	n hovene		10	weak now of ment gas (142)
2000				
2553	n-nexane	weak flow of inert gas (N2)		
2560	n-hexane	Vacuum Rotary Evaporator	40	
2562	n-hexane			
2563	n-hexane	Atmospheric pressure	40	
2565	n-hexane	Vacuum Rotary Evaporator	35	
2566	n-hexane	Vacuum Rotary Evaporator	40	
2500	n hovano	Vacuum Potary Evaporator	70	
2007			10	
2572	n-nexane	Vacuum Rotary Evaporator	45	(110)
2590	n-hexane	Vacuum Rotary Evaporator	50	weak flow of inert gas (N2)
2592	n-hexane	Vacuum Rotary Evaporator	42	
2593	n-hexane	Vacuum Rotary Evaporator	40	weak flow of inert gas (N2)
2605	n-hexane	Vacuum Rotary Evaporator	35	weak flow of inert gas (N2)
2614	n-hexane	Vacuum Rotary Evaporator	45	
2619	II Hoxano		10	
2010	 n hovene	Voouum Botony Evoporator	 /E	
2029	n-nexane	vacuum Rolary Evaporator	45	weak now of ment gas (Ar)
2639	n-hexane	Vacuum Rotary Evaporator	40	
2643	n-hexane			
2649	n-hexane	Vacuum Rotary Evaporator	40	weak flow of inert gas (N2)
2654	n-hexane	Vacuum Rotary Evaporator	50	weak flow of inert gas (N2)
2656				
2658				
2000				
2000	n-nexane	weak now of ment gas (NZ)		
2674	n-nexane	weak flow of inert gas (N2)		
2675	n-hexane	solid phase extraction		
2677	n-hexane	Overnight evaporation		weak flow of inert gas (N2)
3100	n-hexane	Vacuum Rotary Evaporator	35	
3110	n-hexane			
3116	n-hexane	Vacuum Rotary Evaporator	40	weak flow of inert gas (N2)
2117	MTDE	Vacuum Rotary Evaporator	40	weak now of ment gas (142)
3117			40	
3118	n-nexane	Vacuum Rotary Evaporator	40	
3146	n-hexane	Vacuum Rotary Evaporator	45	
3150	MTBE	Vacuum Rotary Evaporator	40	
3151	MTBE	Turbo Vaporisation	40	
3153	n-hexane	Vacuum Rotary Evaporator	35	
3154	n-hexane	Vacuum Rotary Evaporator	50	weak flow of inert das (N2)
2167	n hoxano	Vacuum Potany Evaporator	35	four for of more gao (112)
2170	II HOADIG	vaouum notary Evaporator	00	
31/2		(12)		
31/6	n-nexane	weak flow of inert gas (N2)		
3185	n-hexane	Vacuum Rotary Evaporator	35	weak flow of inert gas (N2)
3190	n-hexane	Vacuum Rotary Evaporator	40	
3191	n-hexane	Vacuum Rotary Evaporator	50	
3197	MTBE	Vacuum Rotary Evaporator	40	
3199	n-hexane	Vacuum Rotary Evaporator	40	weak flow of inert das (N2)
3210		wook flow of inort goo (NO)		
JZ 1U	n-hovano			
2044	n-hexane	Volum Potony Eventster	70	
3214	n-hexane n-hexane	Vacuum Rotary Evaporator	70	
3214 3216	n-hexane n-hexane n-hexane	Vacuum Rotary Evaporator Vacuum Rotary Evaporator	70 40	 weak flow of inert gas (N2)

3220	n-hexane	Vacuum Rotary Evaporator	40	
3222	n-hexane	Vacuum Rotary Evaporator	46	weak flow of inert gas (N2)
3225	n-hexane	Vacuum Rotary Evaporator	48	weak flow of inert gas (N2)
3228	n-hexane	weak flow of inert gas (N2)		
3237	n-hexane	filtration and oven		
3242	n-hexane	Turbo Vaporisation	70	
3246	MTBE			
3248	n-hexane	Vacuum Rotary Evaporator	60	weak flow of inert gas (N2)

Number of participants per country

- 8 labs in BANGLADESH
- 1 lab in BRAZIL
- 1 lab in BULGARIA
- 2 labs in CAMBODIA, Kingdom of
- 1 lab in EGYPT
- 1 lab in FINLAND
- 5 labs in FRANCE
- 11 labs in GERMANY
- 11 labs in HONG KONG
- 12 labs in INDIA
- 4 labs in INDONESIA
- 11 labs in ITALY
- 3 labs in JAPAN
- 5 labs in KOREA
- 1 lab in MAURITIUS
- 2 labs in MOROCCO
- 41 labs in P.R. of CHINA
- 5 labs in PAKISTAN
- 1 lab in ROMANIA
- 2 labs in SINGAPORE
- 2 labs in SPAIN
- 1 lab in SRI LANKA
- 2 labs in TAIWAN R.O.C.
- 2 labs in THAILAND
- 1 lab in THE NETHERLANDS
- 2 labs in TUNISIA
- 7 labs in TURKEY
- 4 labs in U.S.A.
- 1 lab in UNITED KINGDOM
- 7 labs in VIETNAM

Abbreviations:

- C = final result after checking of first reported suspect result
- D(0.01) = outlier in Dixon's outlier test
- D(0.05) = straggler in Dixon's outlier test
- G(0.01) = outlier in Grubbs' outlier test
- G(0.05) = straggler in Grubbs' outlier test
- DG(0.01) = outlier in Double Grubbs' outlier test
- DG(0.05) = straggler in Double Grubbs' outlier test
- R(0.01) = outlier in Rosner' outlier test
- R(0.05) = straggler in Rosner' outlier test
- n.e. = not evaluated
- n.d. = not detected

Literature:

- 1 DIN 53316
- 2 ISO 17234-1:2010
- 3 LMBG 82.02-3:97
- 4 LMBG 82.04-2:98
- 5 EN14362-1/2, March 2002
- 6 Staatsblad van het Koninkrijk der Nederlanden 339, bijlage II, 23 april 1998
- 7 iis-Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation, April 2014
- 8 XP G 08-014:97
- 9 P.L. Davies, Fr Z. Anal. Chem, <u>351</u>, 513, (1988)
- 10 W.J. Conover, Practical; Nonparametric Statistics, J. Wiley&Sons, NY, p.302, (1971)
- 11 ISO 5725, (1986)
- 12 ISO 5725, parts 1-6, (1994)
- 13 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 14 G. Rohm, J. Bohnen & H. Kruessmann, GIT Labor-Fachzeitschrift, p 1080, <u>11</u>, (1997)
- 15 Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, 25(2), pp. 165-172, (1983)