Results of Proficiency Test Ethanol (REN & Food) November 2015

Organised by:Institute for Interlaboratory Studies (iis)
Spijkenisse, the NetherlandsAuthors:ing. A.S. Noordman-de Neef
dr. R.G. Visser & ing. R.J. Starink
iis15C15

February 2016

CONTENTS

1		3
2	SET UP	3
2.1	ACCREDITATION	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	3
2.4	SAMPLES	4
2.5	STABILITY	4
2.6	ANALYSES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	6
4	EVALUATION	7
4.1	EVALUATION PER TEST	7
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	10
4.3	COMPARISON OF THE PROFICIENCY TEST OF NOVEMBER 2015 WITH PREVIOUS PTS	10

Appendices:

1.	Data and statistical results	12
2.	Number of participants per country	22
3.	Abbreviations and literature	23

1 INTRODUCTION

Since 2007, a proficiency test for REN/Food grade Ethanol is organised every year by the Institute for Interlaboratory Studies. During the planning of the annual proficiency testing program 2015/2016, it was decided to continue the round robin for the analysis of REN/Food grade Ethanol.

In this interlaboratory study, 32 laboratories in 16 different countries have participated. See appendix 2 for the number of participants per country. In this report, the results of the 2015 proficiency test are presented and discussed. This report is also electronically available through the iis internet site www.iisnl.com.

2 SET-UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organiser of this proficiency test. Analysis for fit-for-use and homogeneity testing were subcontracted to an accredited laboratory. It was decided to send one sample (1* 0.5 L of REN/Food grade Ethanol, labelled #15232). Participants were requested to report rounded and unrounded results. The unrounded results were preferably used for statistical evaluation.

2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC 17043:10, (R007) since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This PT falls under the accredited scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentially of participant's data. Also customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3). The protocol can be downloaded from iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

The necessary bulk material for sample #15232 was obtained from a local trader. The approximately 50 litre bulk sample was homogenised in a pre-cleaned drum and 50 amber glass bottles of 0.5 L were filled and labelled #15232. The homogeneity of these subsamples was checked by determination of Density in accordance with ASTM D4052 and Water in accordance with ASTM D1364 on 8 stratified randomly selected samples.

Sample	Density at 20°C in kg/L	Water in %M/M
Sample #15232-1	0.80597	5.671
Sample #15232-2	0.80596	5.680
Sample #15232-3	0.80597	5.666
Sample #15232-4	0.80597	5.651
Sample #15232-5	0.80597	5.655
Sample #15232-6	0.80598	5.681
Sample #15232-7	0.80596	5.644
Sample #15232-8	0.80597	5.654

Table 1: Homogeneity test results of subsamples #15232

From the test results of table 1, the repeatabilities were calculated and compared with 0.3 times the corresponding target reproducibility in agreement with the procedure of ISO 13528, Annex B2 in the next table:

	Density at 20°C in kg/L	Water in %M/M
r (observed)	0.00002	0.039
reference method	ISO12185:96	ASTM D1364:02(2012)
0.3 * R (reference method)	0.00015	0.043

Table 2: Repeatabilities of subsamples #15232

The calculated repeatabilities were less than 0.3 times the corresponding reproducibilities of the reference test methods. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories 1*0.5 L bottle of sample #15232 was sent on November 11, 2015.

2.5 STABILITY OF THE SAMPLES

The stability of Ethanol, packed in the amber glass bottles, was checked in the past. The material was found sufficiently stable for the period of the proficiency test.

2.6 ANALYSES

The participants were asked to determine on sample #15232: Density at 20°C, Nonvolatile matter, Permanganate Time Test at 20°C, pHe, Purity Ethanol on dry basis, Strength (in %M/M and %V/V), Water (by KF) and UV Absorbance at 300, 270, 260, 250, 240, 230 and 220nm with an evaluation of the UV-scan.

To get comparable results a detailed report form, on which the units were prescribed as well as the required standards and a letter of instructions were prepared and made available on the data entry portal www.kpmd.co.uk/sgs-iis/. A SDS and a form to confirm receipt of the samples were added to the samples.

3 RESULTS

During four weeks after sample dispatch, the results of the individual laboratories were received via the data entry portal www.kpmd.co.uk/sgs-iis/. The original reported results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported results at that moment.

Shortly after the deadline, the available results were screened for suspect data. A result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the results. Additional or corrected results are used for data analysis and original results are placed under 'Remarks' in the result tables in appendix 1. Results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. Not all data sets proved to have a normal

distribution, in which cases the statistical evaluation of the results should be used with due care.

According to ISO 5725 the original results per determination were submitted to Dixon's and/or Grubbs' and/or Rosner's outlier tests. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. When the uncertainty passed the evaluation no remarks are made in the report. However, when the uncertainty failed the evaluation it is mentioned in the report and it will have consequences for the evaluation of the test results.

Finally, the reproducibilities were calculated from the standard deviations by multiplying these with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are on the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also a normal Gauss curve was projected over the Kernel Density Graph for reference.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the spread of this interlaboratory study. The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used. In some cases, a reproducibility of a former iis proficiency test could be used.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

 $z_{(target)}$ = (result - average of PT) / target standard deviation

The z(target) scores are listed in appendix 1.

Absolute values for z < 2 are very common and absolute values for z > 3 are very rare. The usual interpretation of z-scores is as follows:

z < 1	good
1 < z < 2	satisfactory
2 < z < 3	questionable
3 < z	unsatisfactory

4 EVALUATION

In this proficiency test, some problems were encountered with the dispatch of the samples. Six participants reported results after the final reporting date. In total 32 laboratories reported 254 numerical results. Observed were 11 outlying results, which is 4.3%. In proficiency studies, outlier percentages of 3% - 7.5% are quite normal.

4.1 EVALUATION PER TEST

In this section, the results are discussed per test.

The methods, which were used by the various laboratories, are taken into account for explaining the observed differences when possible and applicable. These methods are also in the tables together with the original data. The abbreviations, used in these tables, are listed in Appendix 3.

In the iis PT reports, ASTM methods are referred to with a number (e.g. D1363) and an added designation for the year that the method was adopted or revised (e.g. D1363:06). If applicable, a designation in parentheses is added to designate the year of reapproval (e.g. D1363:06(2011)). In the results tables of Appendix 1 only the method number and year of adoption or revision e.g. D1363:06 will be used.

Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

<u>Density:</u>	This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in good agreement with the requirements of ISO12185:96.
Nonvolatile matter:	The determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D1353:13.
<u>Permanganate Time Test:</u>	Sample #15232 contained impurities that reduced the Permanganate solution rather quick (For 'on spec' ethanol the Permanganate Time Test will give a test result > 30 minutes). All participants agreed on the time equal or less than 5 minutes, except one participant (reported <50min). Due to this low value for the Permanganate Time Test the precision requirements of ASTM D1363:06(2011) became unrealistic small. Therefore it was decided not the calculate z-scores for this PT.
<u>pHe</u> :	This determination was problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers was not in agreement with the requirements of ASTM D6423:14. It is known (see ref. 16) that in general in a pHe determination with a LiCl electrode the observed values are lower than when other types of electrodes are used. In last year PT (iis14C11) a bimodal distribution was observed. Therefore, in this PT the type of electrode used in the determination was reported by the participants. Unfortunately, the number of observations is too small to be able to underpin this phenomenon.
<u>Purity on dry basis</u> :	Regretfully, no Standard Method does exist that gives a clear definition of purity in Ethanol REN/Food grade. Six of the 13 participants reported to have used method EN15721. This method describes the purity in Ethanol based on the content of Methanol and higher Alcohols as determined by GC. This means that other components (for example Aldehydes, Ketones or other impurities like Aromatics) are not taken into account. Therefore no significant conclusions could be drawn. No statistical outliers were observed. The calculated reproducibility is large in comparison to the calculated reproducibility of the previous proficiency test iis14C11. When the EN15721 test results were evaluated separately, the reproducibility is not in agreement with the requirements of EN15721:13.

<u>Strength (%M/M):</u>	This determination may not be problematic. Two statistical outliers were observed. Regretfully, no standard test method with precision data exists. The calculated reproducibility after rejection of the statistical outliers is small in comparison to the calculated reproducibility in the previous proficiency test iis14C11.
<u>Strength (%V/V):</u>	This determination may not be problematic. Two statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the reproducibility derived from the OIML table and ISO12185:96.
<u>Water:</u>	This determination was problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the requirements of ASTM D1364:02(2012).
<u>UV absorbance:</u>	Regretfully, no Standard Test Method for this determination exists. Some participants reported results obtained with a 50 mm cuvette, others with a 10mm cuvette. For the PT evaluation, the results at 300 nm were converted to 10 mm cuvette by dividing the original values of 50 mm by 5 according to the Law of Lambert-Beer. The calculated reproducibility at 300nm is in line with the calculated reproducibility (R(calc)=0.0052 at mean Absorbance=0.0190) observed in the previous proficiency test iis14C11. This conversion from 50 to 10 mm cuvette could not be done for measurements at 270 till 220 nm as the linearity is not longer valid at Absorbencies > 0.8. Therefore the reported results from 50 mm cuvettes are excluded for the evaluation at 270 nm. From 260 till 220 nm no difference exists any longer between 10 and 50 mm as the Absorbencies are >3. Therefore the results of the statistical evaluations in appendix 1 are listed between brackets. Sample #15232 was clearly contaminated as shown by the high absorbencies. Remarkable, two participants reported "Pass" as conclusion of the UV absorbance determination.

4.2 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

A comparison has been made between the reproducibility as declared by the relevant standard and the reproducibility as found for the group of participating laboratories. The target reproducibilities derived from literature standards (in casu ASTM, EN standards) or previous proficiency tests are compared in the next table.

Parameter	unit	n	average	2.8 *sd	R (lit)
Density at 20°C	kg/L	31	0.8060	0.0002	0.0005
Nonvolatile matter	mg/100mL	12	0.6	1.1	2.1
Permanganate Time Test	min.	18	≤ 5	(3.5)	n.a.
рНе		12	8.1	1.5	1.0
Purity EtOH on dry basis	%M/M	13	99.92	0.13	(0.02)
Strength	%M/M	19	94.34	0.04	(0.05)
Strength	%V/V	27	96.35	0.03	0.06
Water (titrimetric)	%M/M	19	5.60	0.20	0.14
UV-absorbance 300 nm		14	0.0181	0.0067	(0.0052)
UV-absorbance 270 nm		11	1.54	0.08	n.a.
UV-absorbance 260 nm		14	(3.5)	(1.0)	n.a.
UV-absorbance 250 nm		14	(3.6)	(0.8)	n.a.
UV-absorbance 240 nm		14	(3.6)	(0.9)	n.a.
UV-absorbance 230 nm		14	(3.7)	(0.8)	n.a.
UV-absorbance 220 nm		12	(3.8)	(0.5)	n.a.
Conclusion UV-scan	Pass/Fail	12	Fail	n.a.	n.a.

Table 3: Reproducibilities of sample #15232

Results between brackets under R (lit) column are compared with the observed reproducibility of the previous proficiency test iis14C11.

4.3 COMPARISON OF THE PROFICIENCY TEST OF NOVEMBER 2015 WITH PREVIOUS PTs

	November 2015	November 2014	November 2013	November 2012	November 2011
Number of reporting labs	32	25	24	24	23
Number of results reported	254	210	160	169	151
Number of statistical outliers	11	13	9	5	9
Percentage outliers	4.3%	6.2%	5.6%	3.0%	6.0%

Table 4: Comparison with previous proficiency tests

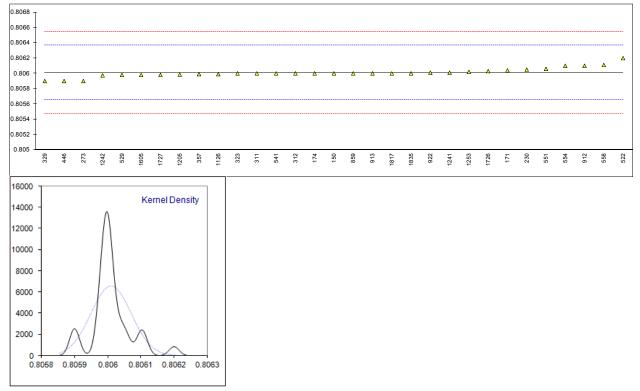
In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

Parameter	November 2015	November 2014	November 2013	November 2012	November 2011
Density at 20°C	++	++	++	++	++
Nonvolatile matter	++	++	n.e.	++	n.e
Permanganate Time Test	(+)	-	+		()
рНе	(-)		n.e.	n.e.	n.e.
Purity EtOH on dry basis	()	(-)	(-)	(+)	(+)
Strength %M/M	(+/-)	(+)	(+)	()	++
Strength %V/V	++	+	+		++
Water (titrimetric)	-	-			+/-
UV-absorbance 300 nm	(+/-)	(-)	(++)	(-)	()
UV-absorbance 270 nm	n.e.	(++)	(+/-)	()	(-)
UV-absorbance 260 nm	n.e.	n.e.	n.e.	n.e.	n.e.
UV-absorbance 250 nm	n.e.	n.e.	n.e.	n.e.	n.e.
UV-absorbance 240 nm	n.e.	(-)	(++)	(+/-)	(-)
UV-absorbance 230 nm	n.e.	(+)	(-)	(++)	(-)
UV-absorbance 220 nm	n.e.	(++)	()	()	(-)

The performance of the determinations of the proficiency tests was compared against the requirements of the respective standards. The conclusions are given in the following table:

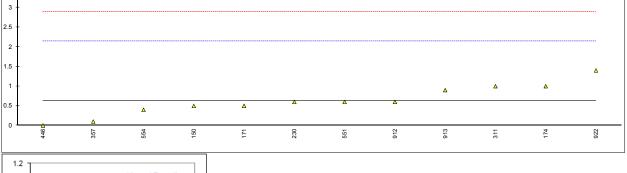
Table 5: Comparison determinations of sample #15232 against the standard

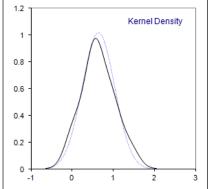
Results between brackets are compared with the observed reproducibility of the previous proficiency test


The performance of the determinations against the requirements of the respective standards is listed in the above table. The following performance categories were used:

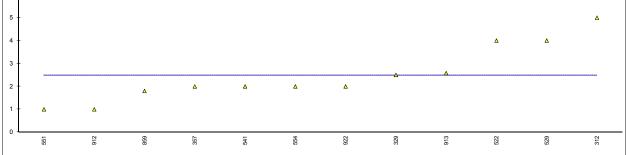
- ++: group performed much better than the standard
- + : group performed better than the standard
- +/-: group performance equals the standard
- : group performed worse than the standard
- -- : group performed much worse than the standard
- n.e.: not evaluated

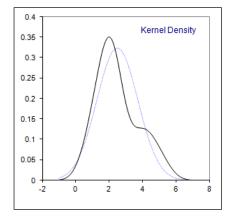
APPENDIX 1


Determination of Density at 20°C on sample #15232; results in kg/L

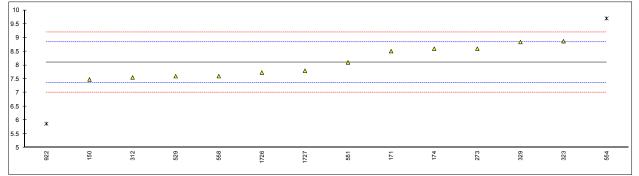

lab	method	value	mark	z(targ)	remarks
150	D4052	0.8060		-0.06	
171	D4052	0.80604		0.17	
174	D4052	0.8060		-0.06	
230	D4052	0.80605	С	0.22	first reported: 0.80495
273	D4052	0.8059		-0.62	
311	D4052	0.8060		-0.06	
312	ISO12185	0.8060		-0.06	
323	D4052	0.8060		-0.06	
329	D4052	0.8059		-0.62	
357	D4052	0.80599		-0.11	
446	D4052	0.8059		-0.62	
522	D4052	0.8062		1.06	
529	D4052	0.80598		-0.17	
541	ISO12185	0.8060		-0.06	
551	D4052	0.80606		0.28	
554	5.050	0.8061		0.50	reported: 806.1 kg/L
558	D4052	0.80611		0.56	
859	D4052	0.8060		-0.06	
912	D4052	0.8061		0.50	
913	D4052	0.8060		-0.06	
922 1126	D4052 ISO12185	0.80601		0.00 -0.11	
120	in house	0.80599 0.805985		-0.11	
1205	in house	0.80601		0.00	
1241	III HOUSE	0.805974		-0.20	
1242	ISO12185	0.80602		0.20	
1574	10012100				
1605	D4052	0.805980		-0.17	
1726	D4052	0.80603		0.11	
1727	D4052	0.80598		-0.17	
1817	BIOOL	0.80600		-0.06	
1835	D4052	0.80600		-0.06	
	normality	not OK			
	n	31			
	outliers	0			
	mean (n)	0.806010			
	st.dev. (n)	0.0000607			
	R(calc.)	0.000170			
	R(ISO12185:96)	0.000500			

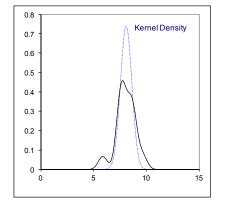
Determination of Nonvolatile matter on sample #15232; results in mg/100mL


lab method value mark z(targ) remarks	
150 D1353 0.5 -0.18	
171 D1353 0.5 -0.18	
174 D1353 1.0 0.49	
230 D1353 0.6 -0.04	
273	
311 D1353 1 0.49	
312 D1353 <1	
323 D1353 <1	
329 EN15691 <1	
357 D1353 0.1 -0.71	
446 D1353 0.0 -0.84	
522	
529	
541 D1353 < 1	
551 D1353 0.6 -0.04	
554 0.4 -0.31	
558	
859 D1353 <1	
912 D1353 0.6 -0.04	
913 D1353 0.9 0.35	
922 D1353 1.40 1.02	
1126	
1205	
1241	
1242	
1253	
1574	
1605	
1726 EN15691 <1	
1727 EN15691 <1	
1817	
1835 EN15691 <10	
normality OK	
n 12	
outliers 0	
mean (n) 0.63	
st.dev. (n) 0.394	
R(calc.) 1.10	
R(D1353:13) 2.11	
35 -	
^{3.5} T	
^{3.5} T 3 -	
3	
3	

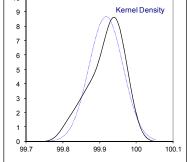


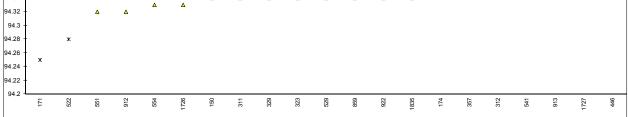
Determination of Permanganate Time Test at 20°C on sample #15232; results in minutes

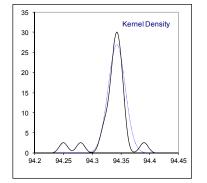

					20°C on sample #15232; results in minutes
lab	method	value	mark	z(targ)	remarks
150	D1363	<5			
171	D1363	<3			
174	D1363	<3			
230	D1363	<50			
273	D 4000				
311	D1363	<5			
312	D1363	5			
323 329	D1363	<5 2 F			
	D1363	2.5			
357 446	D1363	2			
522	D1363	4			
522 529	D1363	4.0			
541	D1363	2			
551	D1363	1			
554	D1000	2			
558					
859	D1363	1.8			
912	D1363	1			
913	D1363	2.58			
922	D1363	2			
1126					
1205					
1241					
1242					
1253					
1574					
1605					
1726					
1727					
1817					
1835	D1363	<2			
	normality	OK			
	n	18			
	outliers	0			
	mean (n)	≤ 5 (1.0000)			
	st.dev. (n)	(1.2338)			
	R(calc.)	(3.455)			
	R(D1363:06)	n.a.			
⁶ T					
5 -					<u>۸</u>
1 - 1					-



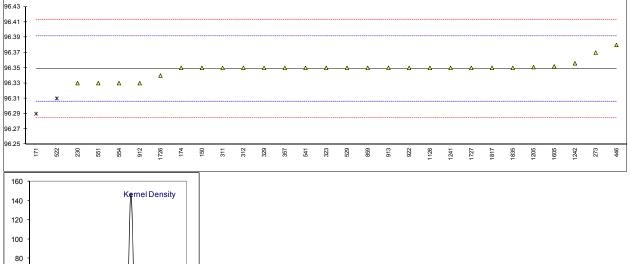
Determination of pHe on sample #15232;


lab	method	electrode	value	mark	z(targ)	remarks
150	D6423	KCI	7.48		-1.72	
171	D6423	KCI	8.51		1.10	
174	D6423	KCI	8.6		1.35	
230						
273	D6423		8.6		1.35	
311	D. 400					
312	D6423	KCI	7.55		-1.52	
323	EN15490	LiCI	8.87		2.09	
329	EN15490	LiCl	8.84		2.01	
357 446						
522						
522 529	D6423	KCI	7.60		-1.39	
529 541	D0423	NOI			-1.59	
551	D6423	KCI	8.1		-0.02	
554	00420	KCI	9.7	D(0.01)	4.36	
558	NBR10841	ROI	7.60	D(0.01)	-1.39	
859						
912						
913						
922	D6423	KCI	5.87	C, D(0.01)	-6.12	first reported: 6.87
1126						•
1205						
1241						
1242						
1253						
1574						
1605						
1726	EN15490	LiCl	7.73		-1.03	
1727	EN15490	LiCl	7.80		-0.84	
1817						
1835						
	normality.	OK				
	normality n	OK 12				
	outliers	2				
	mean (n)	8.107				
	st.dev. (n)	0.5412				
	R(calc.)	1.515				
	R(D6423:14)	1.023				

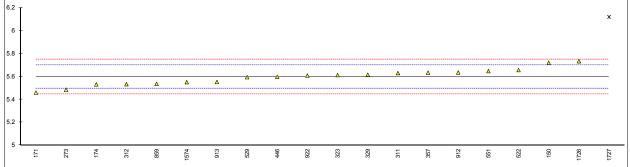

Determination of Purity of Ethanol on dry basis on sample #15232; results in %M/M

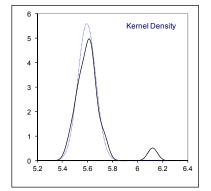

lab	method	Purity of Eth	mark	z(targ)	remark		10202, I	Couito	///////////////////////////////////////	IVI	
150	INH-0001	99.94				-					
171	EN15721	99.9489									
174	D5501	99.978									
230											
273											
311											
312											
323	EN15721	99.94									
329	in house	99.92			reported	l das chro	matograp	hic analys	sis		
357	EN15721	99.948			roportoe	. guo onne	matograp	ino analyc			
446	INH-1316	99.86									
522											
529											
541											
551	INH-1313	99.867									
554											
558											
859	GB/T394	99.933									
912	22	99.82									
913											
922											
1126											
1205											
1203											
1242											
1253											
1574											
1605											
1726	EN15721	99.898									
1720	EN15721	99.97									
1817	ENTOTZT	99.97									
1835	EN15721	 99.9045									
1055	LINISIZI	99.9040			EN14570	1 reculto	only				
	normality (OK			OK	1 results	only				
	normality	OK									
	n outliere	13			6						
	outliers	0			0						
	mean (n)	99.9175			99.9349						
	st.dev. (n)	0.04610			0.02797						
	R(calc.)	0.1291			0.0783		04.40\\				
	R(target)	n.a.			0.0468 (R(EN157	z1:13))				
					Come		(11) = 0.0	176			
					Compar	e K(IIS140	C11) = 0.0	1/6			
											1
¹⁰⁰ T											
										Δ	Δ
99.95 -					Δ	Δ	Δ	Δ	Δ		
			Δ	Δ							
99.9 -		۵	Δ								
99.85 -	۵	Δ									
35.00											
99.8 -	Δ										
00.0											
99.75 -											
99.7	01 02			-	~	<u> </u>	~		-		
	912 446	551	1835	329	859	150	323	357	171	1727	174
10		Kanal Dan H									
9 -	~	Kernel Density									

Determination of Strength on sample #15232; results in %M/M


lab	method	value	mark	z(targ)	remarks
150	Table OIML	94.34			
171	Table AOAC	94.25	R(0.01)		
174	Table OIML	94.35			
230					
273					
311	Table OIML	94.34			
312	Table OIML	94.35			
323	Table OIML	94.34	C C		first reported: 94.39
329	Table OIML	94.34	С		first reported: 94.39
357	Table OIML	94.35			
446	Table OIML	94.39			
522	D4052 - OIML	94.28	R(0.05)		
529	Table OIML	94.34	()		
541	Table OIML	94.35			
551	NBR15639	94.32			
554		94.33			
558					
859		94.34			
912	D4052 - OIML	94.32			
913	Table OIML	94.35			
922	Table OIML	94.34			
1126					
1205					
1241					
1242					
1253					
1574					
1605					
1726	Table OIML	94.33			
1727	Table OIML	94.35			
1817					
1835	Table OIML	94.34			
1055		94.94			
	normality	not OK			
	n	19			
	outliers	2			
		2 94.343			
	mean (n)				
	st.dev. (n)	0.0148			
	R(calc.)	0.042			Compare $P(iin14C11) = 0.052$
	R(target)	n.a.			Compare R(iis14C11) = 0.053
94.4					<u>۸</u>
94.38 -					
94.36 -					
94.34 -		Δ Δ	ΔΔ	Δ Δ	

Determination of Strength on sample #15232; results in %V/V

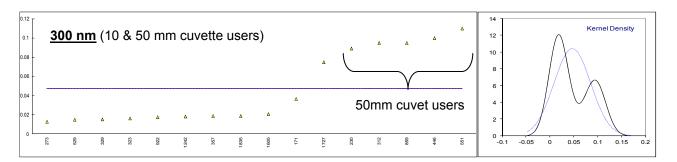

					results in %V/V
lab	method	value	mark	z(targ)	remarks
150	Table OIML	96.35		0.05	
171	Table AOAC	96.29	R(0.01)	-2.75	
174	Table OIML	96.35		0.05	
230	Table OIML	96.33		-0.88	
273	Table OIML	96.37		0.99	
311	Table OIML	96.35		0.05	
312	Table OIML	96.35		0.05	
323	Table OIML	96.35	С	0.05	first reported: 96.40
329	Table OIML	96.35	С	0.05	first reported: 96.40
357	Table OIML	96.35		0.05	
446	Table OIML	96.38		1.45	
522	D4052 - OIML	96.31	R(0.05)	-1.81	
529	Table OIML	96.35	· · · ·	0.05	
541	Table OIML	96.35		0.05	
551	NBR15639	96.33		-0.88	
554		96.33		-0.88	
558					
859	Table OIML	96.35		0.05	
912	D4052 - OIML	96.33		-0.88	
913	Table OIML	96.35		0.05	
922	Table OIML	96.35		0.05	
1126	Table OIML	96.35		0.05	
1205	Table OIML	96.351		0.10	
1241	Table OIML	96.35		0.05	
1242		96.356		0.33	
1253					
1574					
1605	Table OIML	96.352		0.15	
1726	Table OIML	96.34		-0.41	
1727	Table OIML	96.35		0.05	
1817	Table OIML	96.35 96.35		0.05	
1835	Table OIML	96.35 96.35		0.05	
1000		30.55		0.05	
	normality	not OK			
	n	27			
	outliers	2			
	mean (n)	2 96.3488			
	st.dev. (n)	0.01075			
	R(calc.)	0.0301			
	R(OIML table)	0.0600			
		0.0000			



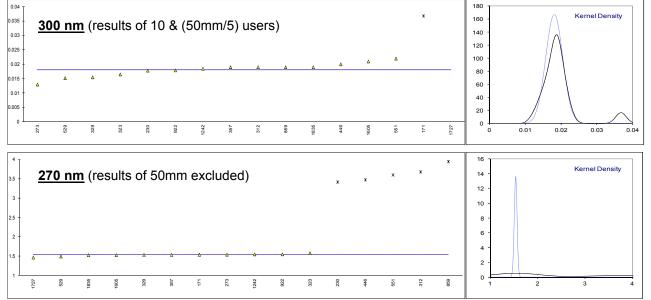
60 40 20

Determination of Water (Titrimetric) on sample #15232; results in %M/M

lab	method	value	mark	z(targ)	remarks
150	E1064	5.72		2.44	
171	E203	5.4599		-2.69	
174	D1364	5.531	С	-1.29	reported 5.531 mg/kg
230					
273	E203	5.485	С	-2.20	first reported: 6.145
311	E203	5.63		0.66	
312	E203	5.533		-1.25	
323	D1364	5.6124		0.32	reported 56124 mg/kg
329	E203	5.616		0.39	
357	E203	5.634		0.74	
446	E203	5.598		0.03	
522	E203	5.656		1.18	
529	D1364	5.594	С	-0.05	reported 5.594 mg/kg
541					
551	D1364	5.647		1.00	
554					
558					
859	D1364	5.536		-1.19	
912	E203	5.635		0.76	
913	D1364	5.552		-0.88	
922	D1364	5.608		0.23	
1126					
1205					
1241					
1242					
1253					
1574		5.5509		-0.90	
1605	D4004				
1726	D1364	5.7335		2.70	
1727	EN15692	6.12	R(0.01)	10.33	
1817					
1835					
	normality	ОК			
	n	19			
	outliers	1			
	mean (n)	5.5964			
	st.dev. (n)	0.07150			
	R(calc.)	0.2002			
	R(D1364:02)	0.1419			
	(=···· -)				


Determination of UV absorbance on sample #15232

lab	method	cuvette	300nm	270nm	260nm	250nm	240nm	230nm	220nm	Pass/Fail
150	INH-001	10 mm								Fail
171	IMPCA004	10 mm	<u>0.0368</u>	1.5432	3.3468	3.4704	3.6128	3.6415	3.7290	Fail
174		10 mm								
230 273	INH-001 IMPCA004	50 mm 10 mm	0.0178 *) 0.013	3.4186 (ex) 1.545	3.6438 3.065	3.6421 3.130	3.1868 3.172	3.3947 3.297	3.4538 2.984	Fail Fail
311	IMPCA004	10 11111	0.013	1.545	5.005	J. 130	5.172	5.297	2.904	
312	INH-001	50 mm	0.019 *)	3.681 (ex)	3.996	3.835	3.219	3.912	3.674	Fail
323	INH-I	10 mm	0.0165	1.582	>3	>3	>3	>3	>3	Fail
329	in house	10 mm	0.0155	1.538	3.617	3.717	3.528	3.824	3.610	Fail
357	INH-001	10 mm	0.019	1.541	> 3	> 3	> 3	> 3	> 3	Fail (> 3)
446	INH-CM	50 mm	0.020 *)	3.476 (ex)	3.599	3.753	3.830	3.794	3.840	Fail
522		10	 0.0152		 3.6326	 3.7886		 3.7177	 3.7584	 Fail
529 541		10 mm	0.0152	1.4979	3.0320	3.7880	3.6554	3.7177	3.7584	Fall
551	INH-3063	50 mm	0.022 *)	3.603 (ex)	3.711	3.804	3.867	3.856	3.909	Fail
554)							
558										
859	INH-001	50 mm	0.019 *)	3.947 (ex)	3.958	3.982	3.984	3.961	3.973	Fail
912										
913 922	in house	10 mm	 0.0179	 1.5529	 3.4296	 3.6477	 3.9070	 4.0858	 4.0065	 Fail
922 1126	III House		0.0179	1.5529	5.4290 	5.0477	3.9070	4.0050	4.0005	
1205										
1241										
1242		10 mm	0.0185	1.5515	3.4060	3.4930	3.5470	3.5650	3.6650	Fail
1253										
1574		10								
1605 1726		10 mm	0.021	1.532	2.751	2.932	2.985	3.036	3.002	
1727	in house	10 mm	<u>0.075</u>	1.47	3.32	3.41	3.5	3.95	3.95	Pass
1817 1835		10 mm	 0.019	 1.53	 2.95	3.43	 3.74	 3.65	 3.90	 Pass
	normality		ОК	suspect	ОК	ОК	ОК	ОК	ОК	n.a.
	n		14	11 ່	14	14	14	14	12	12
	outliers		2	0+5ex	0	0	0	0	2	2 (Pass)
	mean (n)		0.0181	1.535	(3.46)	(3.57)	(3.55)	(3.69)	(3.79)	Fail
	st.dev. (n)		0.00239	0.0294	(0.357)	(0.287)	(0.310)	(0.290)	(0.169)	n.a.
	R(calc.) R(target)		0.0067 n.a.	0.082 n.a.	(1.00) n.a.	(0.80) n.a.	(0.87) n.a.	(0.81) n.a.	(0.47) n.a.	n.a. n.a.


Bold and underlined results: outliers according to D(0.01) Bold results: outliers according to DG(0.01)

Lab 311 reported: UV measurement not possible due to absorbencies out of range Lab 329 reported: UV absorbance: against pure demi-water *) Labs 230; 312; 446; 551; 859 used a 50 mm cuvette. For the evaluation the reported values were divided by 5. The original reported values are respectively: 0.0892; 0.095; 0.100; 0.110; 0.095

divided by 5. The original reported values are respectively; 0.0892; 0.095; 0.100; 0.110; 0.095 (ex)=reported results from 50 mm are excluded from the evaluation, see § 4.1 for more discussion

For evaluation; reported values of 50mm users divided by 5 acc. to Law of Lambert-Beer, see next fig. of 300 nm

APPENDIX 2

Number of participants per country

3 labs in UNITED STATES OF AMERICA 1 lab in MAURITIUS 1 lab in SOUTH AFRICA 6 labs in NETHERLANDS 4 labs in BELGIUM 1 lab in FINLAND 1 lab in UNITED KINGDOM 2 labs in MEXICO 1 lab in ARGENTINA 3 labs in BRAZIL 1 lab in CHINA, People's Republic 2 labs in INDIA 1 lab in PAKISTAN 1 lab in HONG KONG 3 labs in SPAIN 1 lab in THAILAND

APPENDIX 3

Abbreviations:

С	= final result after checking of first reported suspect result
D(0.01)	= outlier in Dixon's outlier test
D(0.05)	= straggler in Dixon's outlier test
G(0.01)	= outlier in Grubbs' outlier test
G(0.05)	= straggler in Grubbs' outlier test
DG(0.01)	= outlier in Double Grubbs' outlier test
DG(0.05)	= straggler in Double Grubbs' outlier test
R(0.01)	= outlier in Rosner outlier test
R(0.05)	= straggler in Rosner outlier test
E	= probably error in calculations
ex	= test result excluded from calculations
n.a.	= not applicable
OILM	= International Organization of Legal Metrology
U	= reported in a deviating unit
SDS	= safety data sheet

Literature:

1	i.i.s. Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, April 2014
2	W. Horwitz and R. Albert, J. AOAC Int., Vol. 79, 3, p. 589, (1996)
3	ASTM E178-02
4	ASTM E1301-03
5	ISO13528-05
5	ISO 5725-86
6	ISO 5725, parts 1-6, 1994
7	M. Thompson and R. Wood, J. AOAC Int, <u>76</u> , 926, (1993)
8	W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
9	IP 367/84
10	DIN 38402 T41/42
11	P.L. Davies, Fr. Z. Anal. Chem, <u>331</u> , 513, (1988)
12	J.N. Miller, Analyst, <u>118</u> , 455, (1993)
13	Analytical Methods Committee Technical brief, No 4. February 2001
14	The Royal Society of Chemistry 2002, Analyst, 2002, 127, page 1359-1364, P.J. Lowthian and
	M. Thompson. (see http://www.rsc.org/suppdata/an/b2/b205600n/)
15	Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure,
	Technometrics, 25(2), pages 165-172, (1983)
16	M.A. Gonçalves et.al., Sensors and Actuators B158 (2011) pages 327-332