Results of Proficiency Test Gascondensate **November 2016**

Institute for Interlaboratory Studies Spijkenisse, the Netherlands Organised by:

Authors: ing. R.J. Starink

dr. R.G. Visser and ing. A.S. Noordman – de Neef Correctors:

Report: iis16R02

January 2017

CONTENTS

1	INTRODUCTION	3
2	SET UP	3
2.1	QUALITY SYSTEM	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	3
2.4	SAMPLES	4
2.5	STABILITY OF THE SAMPLES	4
2.6	ANALYSES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	6
4	EVALUATION	7
4.1	EVALUATION PER TEST	7
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	10
4.3	COMPARISON OF NOVEMBER 2016 PT WITH PREVIOUS PTS	11

Appendices:

1.	Data, statistical results and graphic results	12
2.	Distillation z-scores	23
3.	Number of participating laboratories per country	25
1	Abbreviations and literature	26

1 Introduction

Since 2008, the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for Gascondensate. During the annual proficiency testing program 2016/2017, it was decided to continue the round robin for the analysis of Gascondensate.

In this interlaboratory study 49 laboratories from 22 different countries registered for participation. See appendix 3 for the number of participants per country. In this report, the results of the 2016 Gascondensate proficiency test are presented and discussed. This report is also available as PDF file from the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organiser of this proficiency test (PT). Sample analyses for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC 17025 accredited laboratory. In this proficiency test the participants received one sample of Gascondensate (0.5L bottle labelled #16235). Participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC17043:2010 (R007). This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: 'Protocol for the Organisation, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3). This protocol can be downloaded from the iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and are for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

Gascondensate: iis16R02 page 3 of 26

2.4 SAMPLES

The necessary bulk material, approximately 85 kg, was obtained from a participating laboratory and was spiked with Methanol (approx. 200 mg/kg). After homogenisation, 90 amber glass bottles of 0.5 litre were filled and labelled as sample #16235.

The homogeneity of the subsamples #16235 was checked by determination of Density at 15°C in accordance with ASTM D4052 and Methanol in accordance with an in house test method on 7 stratified randomly selected samples.

	Density at 15 °C in kg/m ³	Methanol in mg/kg
Sample #16235-1	743.06	201.9
Sample #16235-2	742.11	194.2
Sample #16235-3	743.16	194.6
Sample #16235-4	743.13	195.7
Sample #16235-5	743.10	197.7
Sample #16235-6	743.10	195.3
Sample #16235-7	743.13	195.8

Table 1: homogeneity test results of subsamples #16235

From the above test results, the repeatabilities (r) were calculated and compared with 0.3 times the reproducibility (R) of the corresponding reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table:

	Density at 15 °C in kg/m ³	Methanol in mg/kg
r observed	0.09	7.4
reference target method	ASTM D4052:15	Horwitz
0.3xR(ref. target method)	0.64	11.9

Table 2: repeatabilities of subsamples #16235

The calculated repeatabilities were in agreement with 0.3 times the corresponding reproducibility of the respective reference target method. Therefore, homogeneity of the subsamples of #16235 was assumed

To each of the participating laboratories, 1 * 0.5 L bottle (labelled #16235) was sent on October 19, 2016.

2.5 STABILITY OF THE SAMPLES

The stability of Gas condensate, packed in the brown glass bottles, was checked. The material was found sufficiently stable for the period of the proficiency test.

Gascondensate: iis16R02 page 4 of 26

2.6 ANALYSES

The participants were requested to determine on sample #16235: Color Saybolt (Automated and Manual), Density at 15°C, Distillation (IBP, temperature at 5%, 10%, 50%, 90%, 95% recovered and FBP), Methanol, Mercury, Sulphur, Water by KF and Simulated Distillation.

It was explicitly requested to treat the samples as if they were routine samples and to report the test results using the indicated units on the report form and not to round the results, but to report as much significant figures as possible. It was also requested not to report 'less than' results, which are above the detection limit, because such results cannot be used for meaningful statistical calculations.

To get comparable test results a detailed report form, on which the units were prescribed as well as the required reference test methods and a letter of instructions were prepared and made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The laboratories were also requested to confirm the sample receipt on the same data entry portal. A SDS was added to the sample.

3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalysis). Additional or corrected test results are used for data analysis and original test results are placed under 'Remarks' in the test result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test a variant of the Kolmogorov-Smirnov test and by the

Gascondensate: iis16R02 page 5 of 26

calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation of the test results should be used with due care.

According to ISO 5725 the original test results per determination were submitted to Dixon's, Grubbs' and/or Rosner's outlier tests. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Grubbs' test and by R(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. When the uncertainty passed the evaluation, no remarks are made in the report. However, when the uncertainty failed the evaluation it is mentioned in the report and it will have consequences for the evaluation of the test results.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualise the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also a normal Gauss curve was projected over the Kernel Density Graph for reference.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation of this interlaboratory study. The target standard deviation was calculated from the literature reproducibility by division with 2.8.

Gascondensate: iis16R02 page 6 of 26

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

 $z_{\text{(target)}}$ = (test result - average of PT) / target standard deviation

The $z_{(target)}$ scores are listed in the test result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare.

The usual interpretation of z-scores is as follows:

```
|z| < 1 good

1 < |z| < 2 satisfactory

2 < |z| < 3 questionable

3 < |z| unsatisfactory
```

4 EVALUATION

In this proficiency test, problems were encountered with the dispatch of the samples.

Participants in Afghanistan, Australia, Malaysia, Kazakhstan, Nigeria and Oman received the samples late or not at all.

Seven participants did not report any test results at all. Six other participants reported the test results after the final reporting date.

In total, 42 participants reported in total 297 numerical test results. Observed were 23 outlying test results, which is 7.7%. In proficiency studies, outlier percentages of 3% - 7.5% are quite normal.

4.1 EVALUATION PER TEST

In this section, the results are discussed per test. The specified test methods and requirements were taken into account for explaining the observed differences when possible and applicable. These methods are also in the tables together with the reported data. The abbreviations, used in these tables, are listed in appendix 4.

Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

Color Saybolt:

Both the automated method (ASTM D6045) and the manual method (ASTM D156) were evaluated. No statistical outliers were observed. Both calculated reproducibilities are not in agreement with the requirements of respective test methods ASTM D6045:12 and ASTM D156:15. For the automated method 11 participants returned a test result and 10 participants returned a result for the manual method. This limited number of test results and the rounding of the reported test results may (partly) explain the large variation.

Gascondensate: iis16R02 page 7 of 26

Density at 15°C: This determination was not problematic. Three statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in good agreement with the requirements of ASTM D4052:15.

> It should be taken into account that the reproducibility from ASTM D4052:15 is applicable to petroleum distillates and viscous oils only. Therefore no precision data are stated in the 2015 version for Gas condensates. However, Gas condensates may contain relatively high concentrations of light ends and therefore should be treated as gasoline, i.e. cooling the sample prior to analysis to prevent loss of light ends.

Distillation:

This determination may be problematic. In total eight statistical outliers were observed. After rejection of the statistical outliers, the calculated reproducibilities of IBP, temperature at 5% and 50% recovered were in agreement with the requirements of the manual mode of ASTM D86:16a. However, the temperatures at 10%, 90%, 95% recovered and Final Boiling Point were not in agreement with the requirements of the manual mode of ASTM D86:16a. It should be noted that the scope of ASTM D86 does not include Gas condensates, but only products with a limited boiling range like distillate fuels, so the target reproducibilities as used in this report may not be applicable. The use of a simulated distillation determination may be more appropriate.

Methanol:

Serious analytical problems have been observed. The batch was spiked with methanol, therefore the minimal methanol concentration to be found was known (added amount = 199 mg/kg). The laboratories should be able to find at least 159 mg/kg [199 mg/kg_(added amount) – 40 mg/kg_(R Horwitz)]. As the Horwitz reproducibility may be very strict, the minimum amount is set on 140 mg/kg. Two of six laboratories reported a clearly lower amount than 140 mg/kg and therefore these test results were rejected prior to data analysis.

The calculated reproducibility is not at all in agreement with the estimated reproducibility calculated using the Horwitz equation. The average recovery of Methanol (theoretical increment of 199.5 mg/kg) may be good: "less than 99%". The actual blank concentration for Methanol is unknown.

Mercury:

The precision requirements of UOP938 (table 3b) are extremely strict and as they are 6-7 times more strict than the Horwitz estimate, these requirements will not be met easily. Also, the reproducibility of UOP938 is only available for very low concentrations (0.28 and 12.14 µg/<u>L</u>, table B3) and conversion and extrapolation up to 97 µg/kg will lead to extra uncertainty. Therefore, it was decided to use the Horwitz estimate for evaluation of the test results in this report.

This determination may be problematic at a concentration of 96.9 µg Hg per kg. No statistical outliers were observed. The calculated reproducibility is not in agreement with the estimated reproducibility calculated using the Horwitz equation.

Gascondensate: iis16R02

Sulphur:

This determination was not problematic. Four statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM D5453:16e1.

Water:

This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in good agreement with the requirements of ASTM D6304:16e1. It must be noted that the precision data of ASTM D4928 is not applicable at this low concentration (valid between 0.02 – 5.00%M/M).

Simulated Distillation: This determination may be problematic. In total seven statistical outliers were observed. After rejection of the statistical outliers, the calculated reproducibilities of 10%, 50%, 90% and 95% recovered were not in agreement with the requirements of ASTM D2887:16. However, the calculated reproducibility of the Final Boiling Point after rejection of the statistical outliers is in agreement with the requirements of ASTM D2887:16. The test results reported for Initial Boiling Point and 5% recovered were not valuated as the temperature was below the measuring limit of 36°C. The low number of reported test results may (partly) explain the large variation.

Gascondensate: iis16R02 page 9 of 26

4.2 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

A comparison has been made between the reproducibility as declared by the relevant reference test method and the reproducibility as found for the group of participating laboratories. The average results of sample #16235, calculated reproducibilities and reproducibilities, derived from literature reference test methods (in casu ASTM methods) are compared in the next table.

Parameter	unit	n	mean	2.8 * sd	R (lit)
Color Saybolt (Automated)		11	20.1	2.6	1.2
Color Saybolt (Manual)		10	18.6	3.8	2.0
Density at 15°C	kg/m ³	39	0.7434	0.0011	0.0021
Distillation					
Initial Boiling Point	°C	15	31.4	6.5	7.4
5%-recovered	°C	14	56.0	5.6	6.5
10%-recovered	°C	14	67.0	4.3	3.7
50%-recovered	°C	15	121.4	3.2	4.7
90%-recovered	°C	15	243.8	16.0	6.6
95%-recovered	°C	7	285.5	24.0	12.9
Final Boiling Point	°C	13	300.4	8.6	4.4
Methanol	mg/kg	4	198	139	40
Mercury as Hg	μg/kg	21	97	78	62
Sulphur	mg/kg	22	12.4	2.9	3.8
Water content by KF	mg/kg	35	52.6	29.2	182.1
Simulated Distillation					
Initial Boiling Point	°C	4	n.a.	n.a.	n.a.
5%-recovered	°C	4	n.a.	n.a.	n.a.
10%-recovered	°C	5	36.7	2.9	2.1
50%-recovered	°C	6	115.3	6.6	4.3
90%-recovered	°C	6	239.7	11.3	4.3
95%-recovered	°C	5	281.2	6.9	5.0
Final Boiling Point	°C	5	380.2	9.7	11.8

Table 3: performance evaluation sample #16235

Without further statistical calculations it can be concluded from the overview given in table 3 that for almost all tests there is not a good compliance of the group of participants with the relevant test methods. The problematic tests have been discussed in paragraph 4.1.

Gascondensate: iis16R02 page 10 of 26

4.3 COMPARISON OF THE PROFICIENCY TEST OF NOVEMBER 2016 WITH THE PREVIOUS PTS

	November 2016	November 2015	November 2014	November 2013	November 2012
Number of reporting participants	42	38	36	36	38
Number of results reported	297	248	251	216	234
Number of statistical outliers	23	8	8	15	25
Percentage of statistical outliers	7.7%	3.2%	3.2%	6.9%	10.7%

Table 4: comparison with previous proficiency tests

The performance of the determinations of the proficiency tests was compared against the requirements of the respective test methods. The conclusions are given the following table:

Determination	November 2016	November 2015	November 2014	November 2013	November 2012
Color Saybolt				-	
Density at 15 °C	++	+	+	++	-
Distillation (ASTM D86)	-	-			
Methanol		n.e.	n.e.	n.e.	n.e.
Mercury as Hg	-	-	-		
Sulphur	+	-			++
Water content by KF	++	++	++	++	-
SimDist		n.e.	n.e.	n.e.	n.e.

Table 5: comparison of the performance per determination against the target requirements

The performance of the determinations against the requirements of the respective test methods is listed in the above table. The following performance categories were used:

++: group performed much better than the reference test method

+ : group performed better than the reference test method

+/-: group performance equals the reference test method

- : group performed worse than the reference test method

-- : group performed much worse than the reference test method

n.e.: not evaluated

Gascondensate: iis16R02 page 11 of 26

APPENDIX 1

Determination of Color Saybolt (automated and manual) on sample #16235;

lab	method	automated	mark	z(targ)	method	manual	mark z(targ)	Remarks
171	D6045	19		-2.46	D156	20	1.96	
311								
323	D6045	21		2.05				
334					D156	17	-2.24	
442								
444								
491 492								
492								
602								
608					D156	18	-0.84	
609								
657					D156	21	3.36	
785	D6045	19		-2.46				
840					D156	18	-0.84	
873	D6045	19		-2.46				
875								
998					D156	 18	 -0.84	
1066 1164	D6045	19		-2.46	D130		-0.04	
1214	D0040			-2.40				
1257					D156	20	1.96	
1267								
1284	D6045	21		2.05				
1397								
1429	D6045	21		2.05				
1455								
1696		21		2.05	DAFC	40	0.04	
1714 1800		20 		-0.21 	D156	18 	-0.84 	
1815								
1957								
1960	D6045	20		-0.21				
1995								
2124					D156	19	0.56	
6016								
6052	D6045	21.0		2.05				
6087								
9054								
9056 9057								
9058								
9061								
9101								
9107					D156	17	-2.24	
9130								
9142								
9143								
9150								
	normality	ОК			normality	OK		
	n	11			n	10		
	outliers	0			outliers	0		
	mean (n)	20.09			mean (n)	18.60		
	st.dev. (n)	0.944			st.dev. (n)	1.350		
	R(calc.)	2.64			R(calc.)	3.78		
	R(D6045:12)	1.24			R(D156:15)	2.00		

Gascondensate: iis16R02 page 12 of 26

Gascondensate: iis16R02 page 13 of 26

Determination of Density at 15°C on sample #16235; results in kg/L

lab	method	value	mark	z(targ)	remarks
171	D4052	0.7432	С	-0.21	First reported 743.2 kg/L
311	D4052 D4052	0.7432	C	-0.21	i iist reported 7-30.2 kg/L
323	D4052	0.7430		-0.47	
334	D4052	0.7432		-0.47	
442	D4052 D4052	0.7434		0.05	
444	D4052	0.7432		-0.21	
491	ISO12185	0.74329		-0.09	
492	ISO12185	0.74342		0.08	
499	ISO12185	0.74328		-0.10	
602	D1298	0.7429		-0.60	
608	D4052	0.7429		0.58	
609	D5002	0.7432	С	-0.21	First reported 743.2 kg/L
657	D4052	0.7432	O	-0.21	Tilst reported 743.2 kg/L
785	D4052	0.7432		-0.21	
840	D4052 D4052	0.74306		-0.39	
873	D4052 D4052	0.7433		-0.39	
875	D4032	0.7433		-0.00	
998					
1066	D4052	0.7431		-0.34	
1164	D4052	0.7432		-0.21	
1214	D-1002			-0.21	
1257	D4052	0.7432		-0.21	
1267	IP365	0.743		-0.47	
1284	D4052	0.74328		-0.10	
1397	D4052	0.7442		1.11	
1429	D4052	0.7431		-0.34	
1455	D4052	0.7432		-0.21	
1696	D 1002	0.7428		-0.74	
1714	D4052	0.74317		-0.25	
1800	D4052	0.7444		1.37	
1815	ISO12185	0.74378		0.55	
1957	D4052	0.7438	С	0.58	First reported 0.75816
1960	D4052	0.743126		-0.31	
1995					
2124	D4052	0.7434		0.05	
6016	D4052	0.74420		1.11	
6052	D4052	0.7445		1.50	
6087	D4052	0.743490		0.17	
9054	D4052	0.7432		-0.21	
9056	D4052	0.739	R(0.01)	-5.73	
9057	D5002	0.74355	c` ´	0.25	First reported 743.55 kg/L
9058	D5002	0.7431		-0.34	
9061	D5002	0.74319		-0.22	
9101					
9107	D4052	0.74553	C,R(0.01)	2.86	First reported 737.3 kg/L
9130	D4052	0.7433	` '	-0.08	· ·
9142					
9143					
9150	D4052	0.7416	R(0.01)	-2.31	
	normality	not OK			
	n	39			
	outliers	3			
	mean (n)	0.74336			
	st.dev. (n)	0.000397			
	R(calc.)	0.00111			
	R(D4052:15)	0.00213			

Gascondensate: iis16R02 page 14 of 26

Determination of Distillation on sample #16235; results in °C and %V/V

Iab method IBP 5%rec 10%rec 50%rec 90%rec 95%rec FBP res loss 171 D86-Automated 35.5 57.5 68.5 122.8 256.5 279.0 306.0 <0.1 6.4 311 </th <th>- - -</th>	- - -
323 D86-Automated 29.4 54.7 66.5 121.6 249.3 334 D86-Automated 29.8 53.1 64.6 118.9 234.4 267.9 271.3 1.7 1.9 442	- - -
334 D86-Automated 29.8 53.1 64.6 118.9 234.4 <u>267.9</u> <u>271.3</u> 1.7 1.9 442	- - -
442	- - -
	-
444	-
444	
491	-
492	
499	-
602	-
608 D86-Automated 30.4 55.1 66.5 121.3 246.7 301.3 1.3 4.5	
609	
657 D86-Automated 33.3 60.6 70.7 122.3 237.2 276.6 300.7 1.4 1.3	
785	
840 D86-Automated 31.29 55.92 66.78 119.99 243.17 298.78 1.3 4.4	
873 D86-Manual 33.0 56.5 67.0 120.5 242.5 294.0 298.0 1.5 3.0	
875	-
998	-
1066	
1164 D86-Automated 29.2 54.6 65.9 121.2 236.7 274.7 293.3 3.0 0.2	
1214	
1257 D86-Automated 31.1 55.5 66.7 121.9 242.0 287.1 301.5	
1267	
1284 D86-Automated 32.9 57.4 67.9 122.9 243.2 293.8 303.8 1.7 1.4	
1397	
1429 D86-Automated 28.1 54.7 66.4 121.5 241.8 301.4 1.4 3.7	
1455 D86-Automated 29.1 53.5 65.2 121.1 240.9 299.8 1.1 4.7	
1696 <u>37.8</u> <u>64.1</u> <u>73.7</u> 120 244.25 293.2 297.8 0.9 3.7	
1714 D86-Automated 35.8 58.3 68.6 122.6 249.8 <u>322</u> 0.7 4.5	
1800	
1815	
1957	
1960	
1995	
2124	
6016 30.2 <u>63.8</u> <u>74.2</u> <u>127.6</u> <u>276.9</u> 301.6 1.4 5.7	
6052 D86-Automated 31.9 56.4 67.0 121.6 248.4 301.1 1.3 4.9 6087	
9054	
9056	
9057	
9058	
9061	
9101	
9107	_
9130	_
9142	_
9143	_
9150	_
normality OK OK suspect OK OK unknown suspect	
n 15 14 14 15 15 7 13	
outliers 0 (+1excl) 2 2 1 1 0 (+1excl) 2	
mean (n) 31.40 55.99 67.02 121.35 243.79 285.49 300.39	
st.dev. (n) 2.314 2.003 1.532 1.131 5.718 8.574 3.080	
R(calc.) 6.48 5.61 4.29 3.17 16.01 24.01 8.63	
R(D86:16a-M) 7.37 6.54 3.73 4.74 6.59 12.89 4.35	

NB. Results in bold and underlined are statistical outliers or are excluded for statistical evaluation

Gascondensate: iis16R02 page 15 of 26

Determination of Methanol on sample #16235; results in mg/kg

lab	method	value	mark	z(targ)	remarks		
171			uin	<u> </u>			
311							
323	INH-304	210		0.82			
334 442							
442 444	INH-008	260.0		4.32			
491							
492							
499							
602							
608 609							
657	INH-130	20.3	ex	-12.44	Result excluded, see §4.1		
785					, 0		
840							
873 875							
998							
1066	In house	10	ex	-13.16	Result excluded, see §4.1		
1164							
1214							
1257 1267							
1284							
1397							
1429	In house	142		-3.93			
1455 1696	D7423	181 		-1.21 			
1714							
1800							
1815							
1957							
1960 1995							
2124							
6016							
6052							
6087 9054							
9056							
9057							
9058							
9061 9101							
9107							
9130							
9142							
9143 9150							
9150							
	normality n	unknown 4					
	outliers	0 (+2 excl)	Spike:				
	mean (n)	198.25	199.5		Recovery% : <99%		
	st.dev. (n) R(calc.)	49.708 139.18					
	R(Horwitz)	40.06					
	,						
³⁰⁰ T							
050							Δ
250 -							
200 -						Δ	
450					Δ		
150 +				Δ			
100 -							
50 -							
] ³⁰]		*					
0	* 8			g:	92	323	44 44
1	1066	657		1429	1455	83	4

Gascondensate: iis16R02 page 17 of 26

Determination of Mercury as Hg on sample #16235; results in $\mu g/kg$

lab	method	value	mark	z(targ)	remarks
171	UOP938	52.7		-2.01	
311	INH-001	120		1.05	
323	UOP938	68		-1.31	
334	INH-09003	133		1.64	
442					
444	UOP938	103.0		0.28	
491	20.000				
492					
499					
602					
608					
609					
657	UOP938	90		-0.31	
785					
840					
873	UOP938	99.35		0.11	
875					
998					
1066	INH-DMA80	118		0.96	
1164	UOP938	72		-1.13	
1214					
1257					
1267					
1284					
1397	In house	94.41		-0.11	
1429	INH-91	55.8659		-1.86	
1455	1100000	45.00			
1696	UOP938	45.83		-2.32	
1714	LIODOGG				
1800	UOP938	97.5		0.03	
1815					
1957	1000070.0	100 50		1 44	
1960	ISO6978-2	128.50		1.44	
1995 2124	INH-210	137		1.82	
	D7622			-0.28	
6016 6052	UOP938	90.755 140	С	1.96	First reported 140000
6087	UOP938	111.972	C	0.69	i iist reported 140000
9054	UOP938	97.7124		0.09	
9056	001 930				
9057	In house	107.2		0.47	
9058					
9061					
9101					
9107	UOP938	71.17		-1.17	
9130					
9142					
9143					
9150					
					Only UOP938 data:
	normality	OK			OK
	n	21			12
	outliers	0			0
	mean (n)	96.855			87.436
	st.dev. (n)	27.9088			26.5961
	R(calc.)	78.145			74.469
	R(Horwitz)	61.660			56.528
180 _T					0.016 7
160 +					Kemel Density
					0.014 -
140					
120 -					A A A A
100				Δ Δ	
80 -		Δ Δ	Δ -	_	0.008 -
	Δ Δ	Δ			0.006 -
60 +	ΔΔ				// \\
40					0.004 -
20 -					0.002 -
0					
1696	171 1429 323 9107	657	1397	9054 873 444	8 8 8 15 8 8 8 15 8 8 8 15 8 8 15 8 8 15

Gascondensate: iis16R02 page 18 of 26

Determination of Sulphur on sample #16235; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	D5453	12		-0.26	
311	D5453	11		-0.99	
323	D5453	13		0.47	
334	D5453	10.3		-1.51	
442	20.00				
444	D5453	7.27	R(0.05)	-3.73	
491			(0.00)		
492					
499					
602					
608	D5453	12.56		0.15	
609					
657	D5453	13.1		0.55	
785	ISO20884	12.3		-0.04	
840					
873	ISO20846	12.59		0.17	
875					
998					
1066	D5453	14		1.21	
1164	D5453	10.76		-1.17	
1214					
1257	D4294	13		0.47	
1267					
1284	D2622	12.8		0.33	
1397	ISO20846	11.4		-0.70	
1429	ISO20846	16.4	DG(0.05)	2.96	
1455	D2622	15.6	DG(0.05)	2.38	
1696	D5453	13.16		0.59	
1714	D5453	11.20		-0.85	
1800		< 50			
1815	D5453	12.45		0.07	
1957					
1960	D5453	13.2		0.62	
1995	5-1-0				
2124	D5453	12.31	D/0.0=\	-0.03	
6016	D5453	6.6805	R(0.05)	-4.16	
6052	D5453	14.477		1.56	
6087	D5453	11.31		-0.77	
9054					
9056					
9057 9058					
9056					
9101					
9107					
9130	D5453	11.94		-0.30	
9142	D3433			-0.50	
9143					
9150	D5453	12.95		0.44	
0100	D0-100	12.00		0.44	
	normality	OK			
	n	22			
	outliers	4			
	mean (n)	12.355			
	st.dev. (n)	1.0434			
	R(calc.)	2.921			
	R(D5453:16e1)	3.820			
	/	-			

Gascondensate: iis16R02 page 19 of 26

Determination of Water content by KF on sample #16235; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	D6304-A	60	-	0.11	
311	D6304-A	65		0.19	
323	D6304-A	49		-0.06	
334	D6304	60		0.11	
442	IP438	39		-0.21	
444	IP438	38		-0.22	
491					
492					
499					
602					
608	D4928	54.2		0.02	
609	D4928	46.996		-0.09	
657	D6304-A	36.6		-0.25	
785	ISO12937	50		-0.04	
840	D6304-A	45.8		-0.10	
873	D6304-A	59.5		0.11	
875					
998	ID 400				
1066	IP439	78		0.39	
1164	D6304-A	51.3		-0.02	
1214	D6204 A			0.12	
1257	D6304-A	60.2		0.12	
1267 1284	D4928	46.10		-0.10 	
1397	ISO12937	36		-0.26	
1429	IP438	45.2		-0.20 -0.11	
1455	ISO12937	56		0.05	
1696	10012937	65.61		0.20	
1714		45		-0.12	
1800	D6304-A	42.9		-0.15	
1815	ISO12937	46.49		-0.09	
1957	D6304-A	51		-0.02	
1960	D4928	51		-0.02	
1995					
2124	D4928	57.02		0.07	
6016	D6304-A	36.05		-0.25	
6052	D6304-A	70.9		0.28	
6087	D4928	49.333		-0.05	
9054					
9056	D6304	200	R(0.01)	2.27	
9057	In house	52.4		0.00	
9058	In house	54.5		0.03	
9061	D4928	50		-0.04	
9101	D6304-A	 7.4			
9107		74 59.04		0.33	
9130	D6304-A	58.94		0.10	
9142 9143					
9150	D6304-A	59.05		0.10	
3130	D0004-74	33.03		0.10	
	normality	OK			
	n	35			
	outliers	1			
	mean (n)	52.603			
	st.dev. (n)	10.4409			
	R(calc.)	29.234			
	R(D6304:16e1)	182.086			
	(mass injection)				
	· ·				

Gascondensate: iis16R02 page 20 of 26

Determination of Simulated Distillation on sample #16235; results in °C

lab	method	IBP	5%rec	10%rec	50%rec	90%rec	95%rec	FBP
171	D2887	18.0	24.0	36.0	113.0	239.0	279.0	379.0
311	D2887	<36	<36	38.5	115.0	240.5	281.0	382.5
323	D2887				135.7	<u>256.7</u>	300.4	404.7
334								
442								
444								
491								
492								
499								
602								
608	D2887	-7.29	22.81	42.61	117.46	238.44	279.19	374.70
609	D2001	-1.29		<u>42.01</u>		230.44	279.19	374.70
657								
785								
840								
873								
875								
998	D0007	40	44.5		440.5	040.0		004.5
1066	D2887	-10	14.5	36.5	116.5	243.0	282.0	381.5
1164								
1214								
1257								
1267								
1284	D0007	40.00			440.00			
1397	D2887	16.00	26.00	36.00	112.00	233.00	<u>269.00</u>	<u>345.00</u>
1429								
1455								
1696	D2007	<0.5	 <0.5	36.4	 117.7	 244 F	285.0	
1714	D2887			30.4		244.5		383.3
1800								
1815								
1957 1960								
1995 2124								
6016								
6052								
6087								
9054								
9056								
9056								
9057								
9056								
9101								
9107								
9130								
9142								
9143								
9150								
5150								
	normality	unknown	unknown	unknown	unknown	unknown	unknown	unknown
	n	4	4	5	6	6	5	5
	outliers	n.a.	n.a.	1	1	1	2	2
	mean (n)	unknown	unknown	36.68	115.28	239.74	281.24	380.20
	st.dev. (n)	n.a.	n.a.	1.043	2.372	4.038	2.449	3.474
	R(calc.)	n.a.	n.a.	2.92	6.64	11.31	6.86	9.73
	R(D2887:16)	n.a.	n.a.	2.05	4.30	4.30	5.00	11.80
	11(02001.10)	11.4.	11.u.	2.00	-1.00	- 1 .00	5.00	11.00

NB. Results in bold and underlined are statistical outliers

Gascondensate: iis16R02 page 21 of 26

Gascondensate: iis16R02 page 22 of 26

APPENDIX 2:
Atmospheric Distillation z-scores

lab		IBP	5%	10%	50%	90%	95%	FBP
171	D86	1.56	0.65	1.11	0.86	5.35	-1.41	3.61
311								
323	D86	-0.76	-0.55	-0.39	0.15	2.32		
334	D86	-0.61	-1.24	-1.82	-1.45	-3.95	-3.82	<u>-18.72</u>
442								
444								
491								
492								
499								
602								
608	D86	-0.38	-0.38	-0.39	-0.03	1.23		0.58
609								
657	D86	0.72	1.98	2.76	0.56	-2.77	-1.93	0.20
785								
840	D86	-0.04	-0.03	-0.18	-0.80	-0.26		-1.04
873	D86	0.61	0.22	-0.02	-0.50	-0.54	1.85	-1.54
875								
998								
1066								
1164	D86	-0.84	-0.59	-0.84	-0.09	-2.98	-2.34	-4.56
1214								
1257	D86	-0.11	-0.21	-0.24	0.33	-0.75	0.35	0.71
1267								
1284	D86	0.57	0.61	0.66	0.92	-0.25	1.81	2.19
1397	Doo		0.55	0.47				
1429	D86	-1.25	-0.55	-0.47	0.09	-0.84		0.65
1455	D86	-0.87	-1.07	-1.37	-0.15	-1.22	4.00	-0.38
1696	Doo	<u>2.43</u>	<u>3.47</u>	<u>5.01</u>	-0.80	0.19	1.68	-1.67
1714 1800	D86	1.67	0.99	1.19	0.74	2.53		<u>13.90</u>
1815								
1957								
1960								
1995								
2124								
6016		-0.46	3.35	5.39	3.70	13.94		0.78
6052	D86	0.19	0.18	-0.02	0.15	1.94		0.76
6087	D00	0.13	0.10	-0.02	0.10	1.54		0.40
9054								
9056								
9057								
9058								
9061								
9101								
9107								
9130								
9142								
9143								
9150								

Bold and underlined test results are outliers according to Dixon/Grubbs/Rosner

Gascondensate: iis16R02 page 23 of 26

Simulated Distillation z-scores

lab	IBP	5%	10%	50%	90%	95%	FBP
171			-0.93	-1.48	-0.48	-1.25	-0.28
311			2.49	-0.18	0.49	-0.13	0.55
323				13.30	11.04	10.73	5.81
334				10.00	11.04		<u> </u>
442							
444							
491							
492							
499							
602			0.40	4.40			4.04
608			<u>8.10</u>	1.42	-0.85	-1.15	-1.31
609							
657							
785							
840							
873							
875							
998							
1066			-0.25	0.80	2.12	0.43	0.31
1164							
1214							
1257							
1267							
1284							
1397			-0.93	-2.13	-4.39	<u>-6.85</u>	<u>-8.35</u>
1429							
1455							
1696							
1714			-0.38	1.58	3.10	2.11	0.74
1800							
1815							
1957							
1960							
1995							
2124							
6016							
6052							
6087							
9054							
9056							
9057							
9058							
9061							
9101							
9107							
9130							
9142							
9143							

Bold and underlined test results are outliers according to Dixon/Grubbs/Rosner

Gascondensate: iis16R02 page 24 of 26

APPENDIX 3:

Number of participating laboratories per country

- 1 lab in AFGHANISTAN
- 3 labs in AUSTRALIA
- 1 lab in BELGIUM
- 1 lab in CROATIA
- 1 lab in EGYPT
- 1 lab in FRANCE
- 3 labs in GERMANY
- 1 lab in INDONESIA
- 1 lab in KAZAKHSTAN
- 5 labs in MALAYSIA
- 6 labs in NETHERLANDS
- 3 labs in NIGERIA
- 2 labs in NORWAY
- 1 lab in OMAN
- 1 lab in POLAND 1 lab in QATAR
- 3 labs in RUSSIAN FEDERATION
- 1 lab in SINGAPORE
- 4 labs in UNITED ARAB EMIRATES
- 7 labs in UNITED KINGDOM
- 1 lab in UNITED STATES OF AMERICA
- 1 lab in VIETNAM

APPENDIX 4

Abbreviations:

C = final test result after checking of first reported suspect test result

 $\begin{array}{ll} D(0.01) & = \text{outlier in Dixon's outlier test} \\ D(0.05) & = \text{straggler in Dixon's outlier test} \\ G(0.01) & = \text{outlier in Grubbs' outlier test} \\ G(0.05) & = \text{straggler in Grubbs' outlier test} \\ DG(0.01) & = \text{outlier in Double Grubbs' outlier test} \\ DG(0.05) & = \text{straggler in Double Grubbs' outlier test} \\ \end{array}$

R(0.01) = outlier in Rosner's outlier test R(0.05) = straggler in Rosner's outlier test E = probably an error in calculations

ex = test result excluded from statistical calculations

n.a. = not applicable
n.e. = not evaluated
fr. = first reported
SDS = Safety Data Sheet

Literature:

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, April 2014
- 2 ASTM E178:02
- 3 ASTM E1301:03
- 4 ISO13528:05
- 5 ISO 5725:86
- 6 ISO 5725, parts 1-6, 1994
- 7 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 8 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 9 IP 367/84
- 10 DIN 38402 T41/42
- 11 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 12 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 13 Analytical Methods Committee Technical Brief, No4 January 2001
- 14 The Royal Society of Chemistry 2002, Analyst 2002, 127 page 1359-1364, P.J. Lowthian and M. Thompson.
- Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, *Technometrics*, 25(2), pp. 165-172, (1983).
- 16 Horwitz, R. Albert, J. AOAC Int. 79-3, 589 (1996)

Gascondensate: iis16R02 page 26 of 26