Results of Proficiency Test Toluene February 2019

Organised by:Institute for Interlaboratory Studies<br/>Spijkenisse NetherlandsAuthor:ing. C.M. Nijssen-Wester<br/>ing. A.S. Noordman-de Neef & ing. G.A. Oosterlaken-Buijs<br/>iis19C05

May 2019

## CONTENTS

| 1   | INTRODUCTION                                                          | 3  |
|-----|-----------------------------------------------------------------------|----|
| 2   | SET UP                                                                | 3  |
| 2.1 | ACCREDITATION                                                         | 3  |
| 2.2 | PROTOCOL                                                              | 3  |
| 2.3 | CONFIDENTIALITY STATEMENT                                             | 3  |
| 2.4 | SAMPLES                                                               | 4  |
| 2.5 | STABILITY OF THE SAMPLES                                              | 4  |
| 2.6 | ANALYSES                                                              | 5  |
| 3   | RESULTS                                                               | 5  |
| 3.1 | STATISTICS                                                            | 5  |
| 3.2 | GRAPHICS                                                              | 6  |
| 3.3 | Z-SCORES                                                              | 7  |
| 4   | EVALUATION                                                            | 7  |
| 4.1 | EVALUATION PER TEST                                                   | 8  |
| 4.2 | PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES                  | 9  |
| 4.3 | COMPARISON OF THE PROFICIENCY TEST OF FEBRUARY 2019 WITH PREVIOUS PTs | 10 |

Appendices:

| 1. | Data and statistical results       | 11 |
|----|------------------------------------|----|
| 2. | Number of participants per country | 22 |
| 3. | Abbreviations and literature       | 23 |

## 1 INTRODUCTION

Since 1999, the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the analysis of Toluene every year. During the annual proficiency testing program 2018/2019, it was decided to continue the round robins for the analysis of Toluene in accordance with the latest applicable version of the specification for Toluene: ASTM D841. In this interlaboratory study 36 laboratories in 22 different countries registered for participation. See appendix 2 for the number of participants per country. In this report, the results of the 2019 proficiency test for Toluene are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

# 2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency tests (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC 17025 accredited laboratory. It was decided to send one sample of one liter of Toluene, labelled #19021. The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

## 2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC 17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This PT falls under the accredited scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

## 2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

## 2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

# 2.4 SAMPLES

The necessary bulk material of Toluene was purchased from a local chemical supplier. The approximately 60 liter, after homogenisation, was divided over 59 amber glass bottles of 1 liter and labelled #19021. The homogeneity of the subsamples #19021 was checked by determination of Density at 20°C, according to ASTM D4052 on 8 stratified randomly selected samples.

| Toluene         | Density at 20°C<br>in kg/L |
|-----------------|----------------------------|
| sample #19021-1 | 0.86680                    |
| sample #19021-2 | 0.86680                    |
| sample #19021-3 | 0.86678                    |
| sample #19021-4 | 0.86682                    |
| sample #19021-5 | 0.86680                    |
| sample #19021-6 | 0.86683                    |
| sample #19021-7 | 0.86683                    |
| sample #19021-8 | 0.86684                    |

Table 1: homogeneity test results of subsamples #19021

From the above test results the repeatability was calculated and compared with 0.3 times the corresponding reproducibility of the reference test method in agreement with the procedure of ISO 13528, Annex B2 in the next table.

|                               | Density at 20°C<br>in kg/L |
|-------------------------------|----------------------------|
| r (observed)                  | 0.00006                    |
| reference test method         | ISO12185:96                |
| 0.3*R (reference test method) | 0.00015                    |

Table 2: evaluation of repeatability of subsamples #19021

The calculated repeatability was in agreement with 0.3 times the corresponding reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one 1L bottle of Toluene labelled #19021 was sent on February 6, 2019. An SDS was added to the sample package.

## 2.5 STABILITY OF THE SAMPLES

The stability of Toluene packed in amber glass bottles was checked. The material was found sufficiently stable for the period of the proficiency test.

## 2.6 ANALYSES

The participants were requested to determine on the Toluene sample #19021: Acid Wash Color, Appearance, Color Pt/Co, Copper Corrosion, Density at 20°C, Distillation (IBP, 50% recovered, DP), Purity, Benzene, Nonaromatics and Refractive Index at 25°C.

It was explicitly requested to treat the sample as if it was a routine sample and to report the test results using the indicated units on the report form and not to round the test results, but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results, a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the appropriate reference test methods that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

## 3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the test result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

# 3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

According to ISO 5725 the original test results per determination were submitted to Dixon's and/or Grubbs' and/or Rosner's outlier tests. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Grubbs' test and by R(0.05) or DG(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1, was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying these with a factor of 2.8.

## 3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are on the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. The Kernel Density Graph is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also a normal Gauss curve was projected over the Kernel Density Graph for reference.

## 3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM or ISO reproducibilities, the z-scores were calculated-using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

This target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used. In some cases, a reproducibility based on former iis proficiency tests could be used.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

 $z_{(target)} = (test result - average of PT) / target standard deviation$ 

The  $z_{(target)}$  scores are listed in the result tables of appendix 1.

Absolute values for z < 2 are very common and absolute values for z > 3 are very rare. Therefore, the usual interpretation of z-scores is as follows:

|     | z | < 1 | good           |
|-----|---|-----|----------------|
| 1 < | z | < 2 | satisfactory   |
| 2 < | z | < 3 | questionable   |
| 3 < | z |     | unsatisfactory |

# 4 EVALUATION

In this interlaboratory study, no problems were encountered with the dispatch of the samples. Three participants reported the test results after the final reporting date and one other laboratory did not report any test results. Not all laboratories were able to perform all analyses requested.

Finally, in total 284 numerical test results were reported by 35 participants. Observed were 14 outlying results, which is 4.9% of the total of numerical test results. In proficiency studies, outlier percentages of 3% - 7.5% are quite normal.

Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

## 4.1 EVALUATION PER TEST

In this section, the reported test results are discussed per test. The test methods, which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These methods are also in the tables together with the original data. The abbreviations, used in these tables, are listed in appendix 3.

In the iis PT reports, ASTM methods are referred to with a number (e.g. D1218) and an added designation for the year that the method was adopted or revised (e.g. D1218:12). If applicable, a designation in parentheses is added to designate the year of reapproval (e.g. D1218:12(2016)). In the results tables of appendix 1 only the method number and year of adoption or revision e.g. D1218:12 will be used.

- <u>Acid Wash Color</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D848:18.
- <u>Appearance</u>: No problems were observed. All participants, but one, agreed about the appearance of the sample, which was bright, clear and free of suspended matter (Pass).
- <u>Color Pt/Co:</u> This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D5386:16 or ASTM D1209:05(2015).
- <u>Copper Corrosion</u>: No problems have been observed. All participants agreed on a result of 1a (Pass).
- <u>Density at 20°C</u>: This determination was not problematic. One statistical outlier was observed. However, the calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ISO12185:96.
- <u>Distillation:</u> This determination may be problematic for a number of laboratories. In total six statistical outliers were observed and one other test result was excluded. However, all calculated reproducibilities after rejection of the suspect data are in agreement with the requirements of ASTM D850-automated:18. From the reported results of the 50% recovered, it appears that four participants probably did not correct the results for barometric pressure and thermometer inaccuracy as described in ASTM D850 (paragraph 11).
- Purity:This determination was problematic. One statistical outlier was observed.The calculated reproducibility after rejection of the statistical outlier is not in<br/>agreement with the requirements of ASTM D7504:18.
- Benzene:This determination may be problematic at this low level of 4.4 mg/kgBenzene. Considering that the reproducibility of ASTM D7504:18 is based on<br/>a much higher level of Benzene, no z-scores were calculated.

<u>Nonaromatics:</u> This determination was not problematic. One statistical outlier was observed. However, the calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ASTM D7504:18.

<u>Refractive Index:</u> This determination was not problematic. Three statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM D1218:12(2016).

### 4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the reproducibility as declared by the relevant reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average result, the calculated reproducibility (2.8 \* standard deviation) and the target reproducibility derived from literature reference test methods (in casu ASTM, ISO test methods) are presented in the next table.

| Parameter                | unit  | n  | average  | 2.8 * sd | R (lit.) |
|--------------------------|-------|----|----------|----------|----------|
| Acid Wash Color          |       | 29 | 0.7 (1-) | 0.7      | 2.0      |
| Appearance               |       | 30 | Pass     | n.a.     | n.a.     |
| Color Pt/Co              |       | 26 | 4.7      | 2.3      | 5.3      |
| Copper Corrosion         |       | 24 | 1a       | n.a.     | n.a.     |
| Density at 20°C          | kg/L  | 33 | 0.8668   | 0.0002   | 0.0005   |
| Distillation, IBP        | °C    | 27 | 110.2    | 0.6      | 0.6      |
| Distillation, 50% rec.   | °C    | 25 | 110.6    | 0.1      | 0.2      |
| Distillation, DP         | °C    | 28 | 110.7    | 0.4      | 0.5      |
| Purity                   | %M/M  | 29 | 99.945   | 0.022    | 0.013    |
| Benzene                  | mg/kg | 21 | 4.4      | 2.5      | (0.7)*   |
| Nonaromatics             | mg/kg | 29 | 415.8    | 173.5    | 375.8    |
| Refractive Index at 25°C |       | 22 | 1.4940   | 0.0003   | 0.0005   |

Table 3: reproducibilities of tests on sample #19021

\*) Reproducibility between brackets is based on a much higher level than present in sample #19021

Without further statistical calculations, it can be concluded that for most of the tests there is a good compliance of the group of participating laboratories with the relevant reference test methods. The tests that are problematic have been discussed in paragraph 4.1.

#### 4.3 COMPARISON OF THE PROFICIENCY TEST OF FEBRUARY 2019 WITH PREVIOUS PTS

|                                | February<br>2019 | March<br>2018 | March<br>2017 | March<br>2016 | February<br>2015 |
|--------------------------------|------------------|---------------|---------------|---------------|------------------|
| Total Number of reporting labs | 35               | 36 *)         | 67            | 59            | 51               |
| Number of results reported     | 284              | 267           | 743           | 793           | 729              |
| Number of statistical outliers | 14               | 10            | 32            | 19            | 15               |
| Percentage outliers            | 4.9%             | 3.8%          | 4.3%          | 2.4%          | 2.1%             |

Table 4: comparison with previous proficiency tests

\*) from March 2018 the Toluene results are reported separately from Benzene, hence the lower number of reporting laboratories.

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

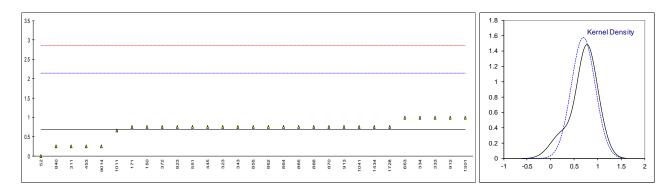
The performance of the determinations of the proficiency tests was compared against the requirements of the respective reference test methods. The conclusions are given the following table.

|                          | February<br>2019 | March<br>2018 | March<br>2017 | March<br>2016 | February<br>2015 |
|--------------------------|------------------|---------------|---------------|---------------|------------------|
| Acid Wash Color          | ++               | ++            | +             | ++            | ++               |
| Appearance               | n.e.             | n.e.          | n.e.          | n.e.          | n.e.             |
| Color Pt/Co              | ++               | ++            | +             | ++            | +                |
| Copper Corrosion         | n.e.             | n.e.          | n.e.          | n.e.          | n.e.             |
| Density at 20°C          | ++               | ++            | ++            | ++            | ++               |
| Distillation             | +                | +/-           | +/-           | +             | +                |
| Purity                   | -                | +             | n.e.          | +             | +                |
| Benzene                  | ()               | n.e.          |               | +/-           | +                |
| Nonaromatics             |                  | +/-           | +             | ++            | +                |
| Refractive Index at 25°C | +                | +             | +             | -             | n.e.             |

Table 5: comparison determinations of sample #19021 against the reference test methods

\*) Reproducibility between brackets is based on a much higher level than present in sample

The performance of the determinations against the requirements of the respective reference test methods is listed in the above table. The following performance categories were used:


- ++: group performed much better than the reference test method
- + : group performed better than the reference test method
- +/-: group performance equals the reference test method
- : group performed worse than the reference test method
- -- : group performed much worse than the reference test method
- n.e.: not evaluated

#### **APPENDIX 1**

| Determination of Acid Wash Color (acid layer) on sample #19021; |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

| Detern     | nination of Acid | d Wash Cold | or (acid layer) on | sample #19021; |  |
|------------|------------------|-------------|--------------------|----------------|--|
| lab        | method           | value       | mark z(targ)       | remarks        |  |
| 52         | D848             | 0           | -0.96              |                |  |
| 150        | D848             | 1-          | 0.08               |                |  |
| 171        | D848             | 1-          | 0.08               |                |  |
| 311        | D848             | 0+          | -0.62              |                |  |
| 323        | D848             | -1          | 0.08               |                |  |
| 333        | D848             | 1           | 0.42               |                |  |
| 334        | D848             | 1           | 0.42               |                |  |
| 343        | D848             | 1-          | 0.08               |                |  |
| 372        | D848             | 1-          | 0.08               |                |  |
| 445        | D848             | 1-          | 0.08               |                |  |
| 453        | D848             | 0+          | -0.62              |                |  |
| 551        | D848             | 1-          | 0.08               |                |  |
| 555        | D040             | <br>No. 1   |                    |                |  |
| 663        | D848<br>D848     | No. 1       | 0.42<br>0.08       |                |  |
| 823<br>840 | D848             | 1-<br>0+    | -0.62              |                |  |
| 840<br>855 | D848             | 0+<br>NO1-  | -0.82              |                |  |
| 862        | D848             | NO.1-       | 0.08               |                |  |
| 864        | D848             | No.1-       | 0.08               |                |  |
| 865        | D848             | No.1-       | 0.08               |                |  |
| 866        | D848             | NO.1-       | 0.08               |                |  |
| 870        | D848             | No.1-       | 0.08               |                |  |
| 912        | D848             | 1           | 0.42               |                |  |
| 913        | D848             | 1-          | 0.08               |                |  |
| 1011       | D848             | 0.67        | -0.04              |                |  |
| 1040       |                  |             |                    |                |  |
| 1041       | D848             | 1-          | 0.08               |                |  |
| 1151       |                  |             |                    |                |  |
| 1301       | D848             | 1           | 0.42               |                |  |
| 1434       | D848             | <1          | 0.08               |                |  |
| 1530       |                  |             |                    |                |  |
| 1728       | D848             | 1-          | 0.08               |                |  |
| 1783       |                  |             |                    |                |  |
| 1812       |                  |             |                    |                |  |
| 6203       |                  |             |                    |                |  |
| 9014       | D848             | 0+          | -0.62              |                |  |
|            |                  |             |                    |                |  |
|            | normality        | suspect     |                    |                |  |
|            | n                | 29          |                    |                |  |
|            | outliers         | 0           |                    |                |  |
|            | mean (n)         | 0.70 (1-)   |                    |                |  |
|            | st.dev. (n)      | 0.253       |                    |                |  |
|            | R(calc.)         | 0.71        |                    |                |  |
|            | st.dev.(D848:18) | 0.722       |                    |                |  |
|            | R(D848:18) **)   | 2.02        |                    |                |  |

\*) In the calculation of the mean, standard deviation, reproducibility and for the graphs, a reported value of 'y-', '-y' or '<y' is changed into y-0.25 (for example 1- into 0.75) and 'y+' is changed into y+0.25 (for example 0+ into 0.25). \*\*) The precision data of Benzene is used



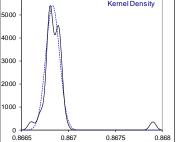
# Determination of Appearance on sample #19021;

| lab  | method   | value            | mark | z(targ) | remarks |
|------|----------|------------------|------|---------|---------|
| 52   | E2680    | Pass             |      |         |         |
| 150  | E2680    | clear and bright |      |         |         |
| 171  | E2680    | Pass             |      |         |         |
| 311  | E2680    | pass             |      |         |         |
| 323  | E2680    | clear & bright   |      |         |         |
| 333  |          |                  |      |         |         |
| 334  | EN15769  | Clear & Bright   |      |         |         |
| 343  | E2680    | pass             |      |         |         |
| 372  | E2680    | Pass             |      |         |         |
| 445  | D4176    | CFFSM            |      |         |         |
| 453  | D4176    | Fail/Sediment    |      |         |         |
| 551  | Visual   | PASS             |      |         |         |
| 555  |          |                  |      |         |         |
| 663  | Visual   | Bright & Clear   |      |         |         |
| 823  | E2680    | Pass             |      |         |         |
| 840  | E2680    | Pass             |      |         |         |
| 855  | E2680    | PASS             |      |         |         |
| 862  | E2680    | Pass             |      |         |         |
| 864  | D4176    | Pass             |      |         |         |
| 865  | E2680    | pass             |      |         |         |
| 866  | E2680    | Pass             |      |         |         |
| 870  | E2680    | Pass             |      |         |         |
| 912  | E2680    | PASS             |      |         |         |
| 913  | E2680    | Pass             |      |         |         |
| 1011 | Visual   | Bright and Clear |      |         |         |
| 1040 | Visual   | Clear and bright |      |         |         |
| 1041 | Visual   | CBFSM            |      |         |         |
| 1151 |          |                  |      |         |         |
| 1301 | D4176    | Clear and bright |      |         |         |
| 1434 | Visual   | Clear Liq        |      |         |         |
| 1530 | Visual   | c & b            |      |         |         |
| 1728 | Visual   | CLEAR            |      |         |         |
| 1783 | Visual   | Clear and Bright |      |         |         |
| 1812 |          |                  |      |         |         |
| 6203 |          |                  |      |         |         |
| 9014 | E2680    | CLEAR&BRIGHT     |      |         |         |
|      | n        | 30               |      |         |         |
|      | mean (n) | Pass (B&C)       |      |         |         |
|      |          |                  |      |         |         |

<u>Abbreviations:</u> C&B / B&C = clear and bright / bright and clear CFFSM = clear and free from suspended matter CBFSM = clear and bright and free from suspended matter

# Determination of Color Pt/Co on sample #19021;

| lab                                                                                                        | method                                                      | value            | mark  | z(targ) | remarks                                |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|-------|---------|----------------------------------------|
| 52                                                                                                         | D5386                                                       | 4                | man   | -0.35   |                                        |
| 150                                                                                                        | D5386                                                       | 5                |       | 0.18    |                                        |
| 171                                                                                                        | D1209                                                       | 5                |       | 0.18    |                                        |
| 311                                                                                                        | D1209                                                       | 5                |       | 0.18    |                                        |
| 323                                                                                                        | D5386                                                       | 6                |       | 0.70    |                                        |
| 333                                                                                                        | D5386                                                       | 4                |       | -0.35   |                                        |
| 334                                                                                                        | D1209                                                       | 5                |       | 0.18    |                                        |
| 343                                                                                                        | D5386                                                       | 5                |       | 0.18    |                                        |
| 372                                                                                                        | D5386                                                       | 4                |       | -0.35   |                                        |
| 445                                                                                                        | D1209                                                       | 3.6              |       | -0.56   |                                        |
| 453                                                                                                        | D1209                                                       | 3                |       | -0.87   |                                        |
| 551                                                                                                        | D5386                                                       | 5                |       | 0.18    |                                        |
| 555<br>663                                                                                                 | D5386                                                       | <br>5            |       | 0.18    |                                        |
| 823                                                                                                        | D5386                                                       | 5                |       | 0.18    |                                        |
| 840                                                                                                        | D1209                                                       | 5                |       | 0.18    |                                        |
| 855                                                                                                        | D5386                                                       | <5               |       |         |                                        |
| 862                                                                                                        | D5386                                                       | 4                |       | -0.35   |                                        |
| 864                                                                                                        | D1209                                                       | <5               |       |         |                                        |
| 865                                                                                                        | D5386                                                       | 4.6              |       | -0.03   |                                        |
| 866                                                                                                        | D1209                                                       | 4                |       | -0.35   |                                        |
| 870                                                                                                        | D1209                                                       | 5                |       | 0.18    |                                        |
| 912                                                                                                        | D5386                                                       | 4                |       | -0.35   |                                        |
| 913                                                                                                        | D5386                                                       | 5                |       | 0.18    |                                        |
| 1011                                                                                                       | D1209                                                       | 5                |       | 0.18    |                                        |
| 1040                                                                                                       | ISO6271                                                     | <5               |       |         |                                        |
| 1041                                                                                                       | ISO6271                                                     | 7.0              |       | 1.23    |                                        |
| 1151                                                                                                       | D1200                                                       |                  |       |         |                                        |
| 1301<br>1434                                                                                               | D1209<br>D1209                                              | LT 5             |       | 0.18    |                                        |
| 1434                                                                                                       | D1209<br>D1209                                              | 5<br>< 3         |       | 0.10    |                                        |
| 1728                                                                                                       | D1209                                                       | 4                |       | -0.35   |                                        |
| 1783                                                                                                       | D1200                                                       | >+30             |       |         | Reported in a different color scale    |
| 1812                                                                                                       | 5100                                                        |                  |       |         |                                        |
| 6203                                                                                                       | D1209                                                       | 4.0              |       | -0.35   |                                        |
| 9014                                                                                                       |                                                             |                  |       |         |                                        |
|                                                                                                            | normality                                                   | suspect          |       |         |                                        |
|                                                                                                            | n                                                           | 26               |       |         |                                        |
|                                                                                                            | outliers                                                    | 0                |       |         |                                        |
|                                                                                                            | mean (n)                                                    | 4.66             |       |         |                                        |
|                                                                                                            | st.dev. (n)                                                 | 0.804            |       |         |                                        |
|                                                                                                            | R(calc.)                                                    | 2.25             |       |         |                                        |
|                                                                                                            | st.dev.(D5386:16)                                           | 1.900            |       |         |                                        |
|                                                                                                            | R(D5386:16)                                                 | 5.32             |       |         | Compare: R(D1209:05) = 7               |
|                                                                                                            |                                                             |                  |       |         |                                        |
| <sup>12</sup>                                                                                              |                                                             |                  |       |         | 0.6                                    |
| 10 -                                                                                                       |                                                             |                  |       |         |                                        |
|                                                                                                            |                                                             |                  |       |         |                                        |
| 8 -                                                                                                        |                                                             |                  |       |         | 0.4 -                                  |
|                                                                                                            |                                                             |                  |       |         |                                        |
| 6 -                                                                                                        |                                                             |                  |       |         | A 0.3 -                                |
| 4 -                                                                                                        |                                                             | Δ Δ              | Δ Δ Δ | Δ Δ Δ   |                                        |
|                                                                                                            |                                                             |                  |       |         | 0.2                                    |
| 2 -                                                                                                        |                                                             |                  |       |         | 0.1 -                                  |
|                                                                                                            |                                                             |                  |       |         |                                        |
| 0<br>0<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 12 23 23 33 25 33 34 55 55 55 55 55 55 55 55 55 55 55 55 55 | 203<br>203<br>50 | 43 24 | 55 51   |                                        |
| 4 4                                                                                                        | ~ ~ ~ ~ ~ ~                                                 | ÷ 8 8 ÷          |       | ლ ú û   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |

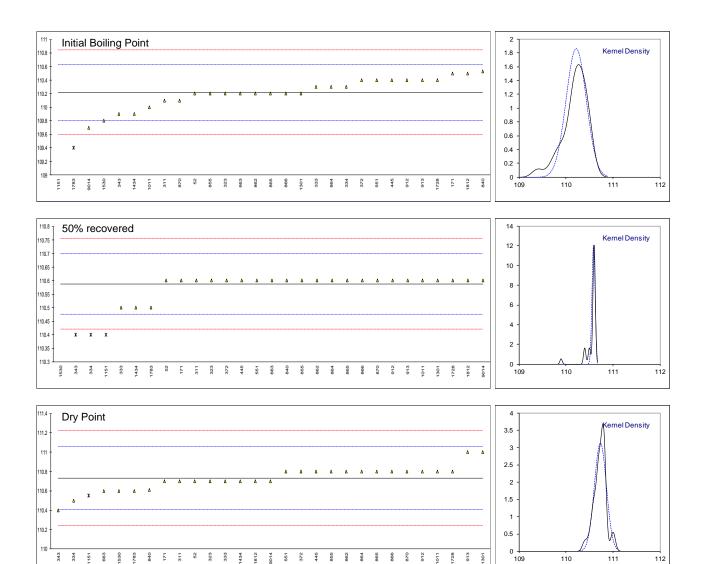

# Determination of Copper Corrosion on sample #19021;

| lab  | method   | value     | mark | z(targ) | remarks |
|------|----------|-----------|------|---------|---------|
| 52   | D849     | 1a        |      |         |         |
| 150  | D849     | 1a        |      |         |         |
| 171  | D849     | 1a        |      |         |         |
| 311  | D849     | 1a        |      |         |         |
| 323  | D849     | 1a        |      |         |         |
| 333  |          |           |      |         |         |
| 334  | D849     | pass      |      |         |         |
| 343  |          |           |      |         |         |
| 372  | D849     | 1a        |      |         |         |
| 445  | D849     | 1a        |      |         |         |
| 453  |          |           |      |         |         |
| 551  | D130     | 1A        |      |         |         |
| 555  |          |           |      |         |         |
| 663  | D849     | 1a        |      |         |         |
| 823  | D849     | 1a        |      |         |         |
| 840  | D849     | 1A        |      |         |         |
| 855  | D849     | 1A        |      |         |         |
| 862  | D849     | 1a        |      |         |         |
| 864  | D849     | 1a        |      |         |         |
| 865  | D849     | 1a        |      |         |         |
| 866  | D849     | 1a        |      |         |         |
| 870  | D849     | 1a        |      |         |         |
| 912  | D849     | 1A        |      |         |         |
| 913  | D849     | 1a        |      |         |         |
| 1011 | D849     | 1a        |      |         |         |
| 1040 |          |           |      |         |         |
| 1041 |          |           |      |         |         |
| 1151 |          |           |      |         |         |
| 1301 | D849     | 1a        |      |         |         |
| 1434 | D849     | 1a        |      |         |         |
| 1530 |          |           |      |         |         |
| 1728 | D849     | 1A        |      |         |         |
| 1783 |          |           |      |         |         |
| 1812 |          |           |      |         |         |
| 6203 |          |           |      |         |         |
| 9014 |          |           |      |         |         |
|      | n        | 24        |      |         |         |
|      | mean (n) | 1a (Pass) |      |         |         |
|      |          |           |      |         |         |

# Determination of Density at 20°C on sample #19021: results in kg/L

|            | mode and             |           |         | _11 >   |         |                       |
|------------|----------------------|-----------|---------|---------|---------|-----------------------|
| lab        | method D 1050        | value     | mark    | z(targ) | remarks |                       |
| 52         | D4052                | 0.8668    |         | -0.16   |         |                       |
| 150        | D4052                | 0.8669    |         | 0.40    |         |                       |
| 171        | D4052                | 0.8668    |         | -0.16   |         |                       |
| 311        | D4052                | 0.8668    |         | -0.16   |         |                       |
| 323        | ISO12185             | 0.8667    |         | -0.72   |         |                       |
| 333        | ISO12185             | 0.8669    |         | 0.40    |         |                       |
| 334        | ISO12185             | 0.8668    |         | -0.16   |         |                       |
| 343        | ISO12185             | 0.8668    |         | -0.16   |         |                       |
| 372        | D4052                | 0.8669    |         | 0.40    |         |                       |
| 445        | D4052                | 0.8669    |         | 0.40    |         |                       |
| 453        | ISO12185             | 0.8668    |         | -0.16   |         |                       |
| 551        | D4052                | 0.8669    |         | 0.40    |         |                       |
| 555        |                      |           |         |         |         |                       |
| 663        | D4052                | 0.86679   |         | -0.22   |         |                       |
| 823        | ISO12185             | 0.86686   |         | 0.17    |         |                       |
| 840        | D4052                | 0.86691   |         | 0.45    |         |                       |
| 855        | ISO12185             | 0.8669    |         | 0.40    |         |                       |
| 862        | D4052                | 0.86689   |         | 0.34    |         |                       |
| 864        | D4052                | 0.86682   |         | -0.05   |         |                       |
| 865        | D4052                | 0.86688   |         | 0.28    |         |                       |
| 866        | D4052                | 0.86689   |         | 0.34    |         |                       |
| 870        | D4052                | 0.86685   |         | 0.12    |         |                       |
| 912        | D4052                | 0.8668    |         | -0.16   |         |                       |
| 913        | D4052                | 0.8668    |         | -0.16   |         |                       |
| 1011       | D4052                | 0.8666    |         | -1.28   |         |                       |
| 1040       | ISO12185             | 0.86686   |         | 0.17    |         |                       |
| 1041       |                      |           |         |         |         |                       |
| 1151       | D4052                | 0.8667975 |         | -0.18   |         |                       |
| 1301       | D4052                | 0.8668    |         | -0.16   |         |                       |
| 1434       | D4052                | 0.86676   |         | -0.39   |         |                       |
| 1530       | ISO12185             | 0.86690   |         | 0.40    |         |                       |
| 1728       | ISO12185             | 0.86680   |         | -0.16   |         |                       |
| 1783       | D4052                | 0.8679    | R(0.01) | 6.00    |         |                       |
| 1812       | ISO12185             | 0.8667    | ()      | -0.72   |         |                       |
| 6203       | ISO12185             | 0.8668    |         | -0.16   |         |                       |
| 9014       | D4052                | 0.86696   |         | 0.73    |         |                       |
|            |                      |           |         |         |         |                       |
|            | normality            | suspect   |         |         |         |                       |
|            | n                    | 33 ່      |         |         |         |                       |
|            | outliers             | 1         |         |         |         |                       |
|            | mean (n)             | 0.86683   |         |         |         |                       |
|            | st.dev. (n)          | 0.000074  |         |         |         |                       |
|            | R(calc.)             | 0.00021   |         |         |         |                       |
|            | st.dev.(ISO12185:96) | 0.000179  |         |         |         |                       |
|            | R(ISO12185:96)       | 0.0005    |         |         |         |                       |
|            | (                    |           |         |         |         |                       |
|            |                      |           |         |         |         |                       |
| 0.868      |                      |           |         |         | x       | 6000 Kornel Density   |
| 0.8678 -   |                      |           |         |         |         | 5000 - Kernel Density |
| 0.8676 -   |                      |           |         |         |         | 3000                  |
| 0.8674 -   |                      |           |         |         |         | 4000 - V              |
| 0.8672     |                      |           |         |         |         |                       |
| 0.867 -    |                      |           |         |         |         | 3000 -                |
| 0.8668 -   |                      | Δ Δ Δ Δ   | <u></u> |         |         |                       |
| 0.8666 + A | ۵ ـ                  |           |         |         |         | 2000 -                |

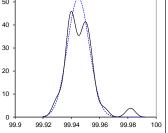





# Determination of Distillation on sample #19021; results in °C

| lab        | method                        | IBP            | mark    | z(targ)        | 50% rec        | mark    | z(targ)      | DP             | mark  | z(targ)      | range      |
|------------|-------------------------------|----------------|---------|----------------|----------------|---------|--------------|----------------|-------|--------------|------------|
| 52         | D850-automated                | 110.2          | mark    | -0.09          | 110.6          | mant    | 0.22         | 110.7          | marit | -0.20        | 0.5        |
| 150        | D850-automated                |                |         |                |                |         |              |                |       |              |            |
| 171        | D850-automated                | 110.5          |         | 1.35           | 110.6          |         | 0.22         | 110.7          |       | -0.20        | 0.2        |
| 311        | D850-automated                | 110.1          |         | -0.58          | 110.6          |         | 0.22         | 110.7          |       | -0.20        | 0.6        |
| 323        |                               | 110.2          |         | -0.09          | 110.6          |         | 0.22         |                |       | -0.20        | 0.5        |
| 333        | D850-automated                | 110.3          |         | 0.39           | 110.5          |         | -1.58        | 110.7          |       | -0.20        | 0.4        |
| 334        | D850-automated                | 110.3          |         | 0.39           | 110.4          | R(0.01) | -3.37        | 110.5          |       | -1.43        | < 145      |
| 343        | D850-automated                | 109.9          |         | -1.54          | 110.4          | R(0.01) | -3.37        | 110.4          |       | -2.04        | 0.5        |
| 372        | D850-automated                | 110.4          |         | 0.87           | 110.6          |         | 0.22         | 110.8          |       | 0.41         | 0.4        |
| 445        | D850-manual                   | 110.4          |         | 0.87           | 110.6          |         | 0.22         | 110.8          |       | 0.41         | 0.4        |
| 453        | _                             |                |         |                |                |         |              |                |       |              |            |
| 551        | D850                          | 110.4          |         | 0.87           | 110.6          |         | 0.22         | 110.8          |       | 0.41         | 0.4        |
| 555        | <b>D</b> 00                   |                |         |                |                |         |              |                |       |              |            |
| 663        | D850-automated                | 110.2          |         | -0.09          | 110.6          |         | 0.22         | 110.6          |       | -0.81        | 0.4        |
| 823        | Doco automated                |                |         |                |                |         |              |                |       |              |            |
| 840        | D850-automated                | 110.53         |         | 1.50           | 110.60         |         | 0.22         | 110.61         |       | -0.75        | 0.1        |
| 855        | D850-manual                   | 110.2          |         | -0.09<br>-0.09 | 110.6          |         | 0.22<br>0.22 | 110.8          |       | 0.41         | 0.6        |
| 862<br>864 | D850-manual<br>D850-automated | 110.2<br>110.3 |         | -0.09          | 110.6<br>110.6 |         | 0.22         | 110.8<br>110.8 |       | 0.41<br>0.41 | 0.6<br>0.5 |
| 865        |                               | 110.3          |         | -0.09          | 110.6          |         | 0.22         | 110.8          |       | 0.41         | 0.5        |
| 866        | D850-manual                   | 110.2          |         | -0.09          | 110.6          |         | 0.22         | 110.8          |       | 0.41         | 0.6        |
| 870        | D850-manual                   | 110.2          |         | -0.58          | 110.6          |         | 0.22         | 110.8          |       | 0.41         | 0.0        |
| 912        | Dood manual                   | 110.4          |         | 0.87           | 110.6          |         | 0.22         | 110.8          |       | 0.41         | 0.4        |
| 913        | D850-manual                   | 110.4          |         | 0.87           | 110.6          |         | 0.22         | 111.0          |       | 1.64         | 0.6        |
| 1011       | D850-automated                | 110.0          |         | -1.06          | 110.6          |         | 0.22         | 110.8          |       | 0.41         |            |
| 1040       |                               |                |         |                |                |         |              |                |       |              |            |
| 1041       |                               |                |         |                |                |         |              |                |       |              |            |
| 1151       |                               | 98.15          | R(0.01) | -58.17         | 110.4          | R(0.01) | -3.37        | 110.55         | ex    | -1.12        | 0.2        |
| 1301       | D850-manual                   | 110.2          |         | -0.09          | 110.6          |         | 0.22         | 111.0          |       | 1.64         | 0.8        |
| 1434       | D850-automated                | 109.9          |         | -1.54          | 110.5          |         | -1.58        | 110.7          |       | -0.20        | 0.8        |
| 1530       |                               | 109.8          |         | -2.02          | 109.9          | R(0.01) | -12.35       | 110.6          |       | -0.81        | 0.8        |
| 1728       | D850-manual                   | 110.4          |         | 0.87           | 110.6          |         | 0.22         | 110.8          |       | 0.41         | 0.4        |
| 1783       | D1078                         | 109.4          | R(0.05) | -3.95          | 110.5          |         | -1.58        | 110.6          |       | -0.81        |            |
| 1812       |                               | 110.50         |         | 1.35           | 110.60         |         | 0.22         | 110.70         |       | -0.20        | 0.2        |
| 6203       | D050 and a start              |                |         |                |                |         |              |                |       |              |            |
| 9014       | D850-automated                | 109.7          |         | -2.50          | 110.6          |         | 0.22         | 110.7          |       | -0.20        | 1.0        |
|            | normality                     | ОК             |         |                | not OK         |         |              | suspect        |       |              |            |
|            | n                             | 27             |         |                | 25             |         |              | 28             |       |              |            |
|            | outliers                      | 2              |         |                | 4              |         |              | 0(+1ex)        |       |              |            |
|            | mean (n)                      | 110.22         |         |                | 110.59         |         |              | 110.73         |       |              |            |
|            | st.dev. (n)                   | 0.215          |         |                | 0.033          |         |              | 0.127          |       |              |            |
|            | R(calc.)                      | 0.60           |         |                | 0.09           |         |              | 0.36           |       |              |            |
|            | st.dev.(D850-A:18)            | 0.208          |         |                | 0.056          |         |              | 0.163          |       |              |            |
|            | R(D850-A:18)<br>compare       | 0.58           |         |                | 0.16           |         |              | 0.46           |       |              |            |
|            | R(D850-M:18)                  | 0.41           |         |                | 0.65           |         |              | 0.65           |       |              |            |
|            |                               |                |         |                |                |         |              | •              |       |              |            |

Lab 1151: two out of three results were outliers, therefore the other test result is excluded.

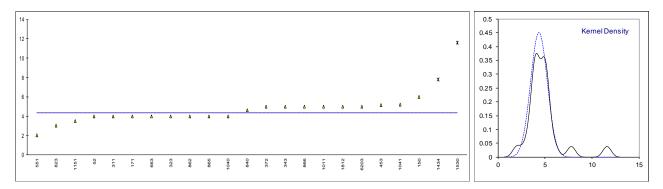

Theoretical mid-boiling point = 110.6°C



# Determination of Purity by GC on sample #19021; results in %M/M

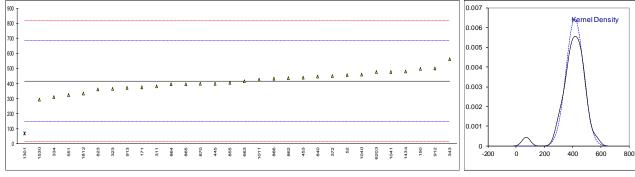
|                               | lah | mothod            | value    | mark      | z(tora) | remarks                |      |                |
|-------------------------------|-----|-------------------|----------|-----------|---------|------------------------|------|----------------|
|                               |     | method            |          | mark      | z(targ) | remarks                |      |                |
|                               | 52  | D7504             | 99.94    |           | -1.04   |                        |      |                |
|                               | 150 | D7504             | 99.93    |           | -3.18   |                        |      |                |
|                               | 171 | D7504             | 99.95    |           | 1.09    |                        |      |                |
|                               | 311 | D7504             | 99.95    |           | 1.09    |                        |      |                |
|                               | 323 | D7504             | 99.95    |           | 1.09    |                        |      |                |
|                               | 333 | _                 |          |           |         |                        |      |                |
|                               | 334 | D2360             | 99.954   |           | 1.95    |                        |      |                |
|                               | 343 | D2360             | 99.93    |           | -3.18   |                        |      |                |
|                               | 372 | D7504             | 99.94    |           | -1.04   |                        |      |                |
|                               | 145 | D6526             | 99.954   |           | 1.95    |                        |      |                |
|                               | 153 | D2360             | 99.95    |           | 1.09    |                        |      |                |
|                               | 551 | D2360             | 99.94    |           | -1.04   |                        |      |                |
|                               | 555 |                   |          |           |         |                        |      |                |
|                               | 63  | D7504             | 99.938   |           | -1.47   |                        |      |                |
|                               | 323 | D2360             | 99.9495  |           | 0.99    |                        |      |                |
|                               | 340 | D7504             | 99.938   |           | -1.47   |                        |      |                |
|                               | 355 | D7504             | 99.94    |           | -1.04   |                        |      |                |
| 8                             | 362 | D7504             | 99.943   |           | -0.40   |                        |      |                |
| 8                             | 364 | D7504             | 99.95    |           | 1.09    |                        |      |                |
| 8                             | 365 | D7504             | 99.945   |           | 0.03    |                        |      |                |
| 8                             | 366 | D7504             | 99.946   |           | 0.24    |                        |      |                |
| 8                             | 370 | D7504             | 99.947   |           | 0.45    |                        |      |                |
| ç                             | 912 | D2360             | 99.95    |           | 1.09    |                        |      |                |
| ę                             | 913 | D7504             | 99.955   |           | 2.16    |                        |      |                |
| 10                            | 011 | D5917             | 99.94    |           | -1.04   |                        |      |                |
| 10                            | 040 | D6526             | 99.9400  |           | -1.04   |                        |      |                |
| 10                            | )41 | In house          | 99.9371  |           | -1.66   |                        |      |                |
| 11                            | 151 |                   |          |           |         |                        |      |                |
| 13                            | 301 | D7504             | 99.982   | C,R(0.01) | 7.93    | first reported: 99.989 |      |                |
|                               | 134 | D4492             | 99.93963 | , ( )     | -1.12   | ·                      |      |                |
|                               | 530 | D6526             | 99.963   |           | 3.87    |                        |      |                |
|                               | 728 |                   |          |           |         |                        |      |                |
|                               | 783 |                   |          |           |         |                        |      |                |
|                               | 312 |                   | 99.9537  |           | 1.89    |                        |      |                |
|                               | 203 | D7504             | 99.9387  |           | -1.32   |                        |      |                |
|                               | )14 | 2.001             |          |           |         |                        |      |                |
|                               |     |                   |          |           |         |                        |      |                |
|                               |     | normality         | OK       |           |         |                        |      |                |
|                               |     | n                 | 29       |           |         |                        |      |                |
|                               |     | outliers          | 1        |           |         |                        |      |                |
|                               |     | mean (n)          | 99.9449  |           |         |                        |      |                |
|                               |     | st.dev. (n)       | 0.00772  |           |         |                        |      |                |
|                               |     | R(calc.)          | 0.0216   |           |         |                        |      |                |
|                               |     | st.dev.(D7504:18) | 0.00468  |           |         |                        |      |                |
|                               |     | R(D7504:18)       | 0.00400  |           |         |                        |      |                |
|                               |     | П(В7504.10)       | 0.0101   |           |         |                        |      |                |
|                               |     |                   |          |           |         |                        |      |                |
|                               |     |                   |          |           |         |                        | 60   |                |
| <sup>99.99</sup> T            |     |                   |          |           |         |                        |      |                |
|                               |     |                   |          |           |         | ;                      | κ    | Kernel Density |
| 99.99<br>99.98 -              |     |                   |          |           |         | ;                      | 50 - | Kernel Density |
|                               |     |                   |          |           |         |                        | 50 - | Kernel Density |
| 99.98 -<br>99.97 -            |     |                   |          |           |         | ,                      |      | Kernel Density |
| 99.98 -                       |     |                   |          |           |         |                        | 50 - | Kernel Density |
| 99.98 -<br>99.97 -            |     |                   |          |           | A A A   | <u>AA</u>              | 50 - | Kernel Density |
| 99.98 -<br>99.97 -<br>99.96 - |     |                   |          |           | A A A   | <u>AA</u>              | 50 - | Kernel Density |

1301




9.93 9.92

# Determination of Benzene on sample #19021; results in mg/kg


| lak          | moth o d             | value         | moul-     | -(40)   | no montro                       |
|--------------|----------------------|---------------|-----------|---------|---------------------------------|
| lab<br>52    | D7504                | value<br>4    | mark      | z(targ) | remarks                         |
| 150          | D7504                | 4<br>6        |           |         |                                 |
| 171          | D7504                | 4             |           |         |                                 |
| 311          | D7504                | 4             |           |         |                                 |
| 323          | D7504                | 4             |           |         |                                 |
| 333          |                      |               |           |         |                                 |
| 334          | D2360                | <10           | С         |         | first reported: <0.001 mg/kg    |
| 343          | D2360                | 5             |           |         |                                 |
| 372          | D7504                | 5             |           |         |                                 |
| 445          | D6526                | <5            | С         |         | first reported: <0.0005 mg/kg   |
| 453          | D2360                | 5.166         |           |         |                                 |
| 551          | D2360                | 2             |           |         |                                 |
| 555          | D7504                |               |           |         |                                 |
| 663<br>823   | D7504<br>D2360       | 4.0<br>3      |           |         |                                 |
| 823<br>840   | D2360<br>D7504       | 3<br>4.6      |           |         |                                 |
| 855          | D7504                | 4.0<br><10    |           |         |                                 |
| 862          | D7504                | 4             |           |         |                                 |
| 864          | D7504                | <10           |           |         |                                 |
| 865          | D7504                | 4             |           |         |                                 |
| 866          | D7504                | 5             |           |         |                                 |
| 870          | D7504                | <10           |           |         |                                 |
| 912          | D2360                | <10           |           |         |                                 |
| 913          | D7504                | <5            | С         |         | first reported: 20              |
| 1011         | D5917                | 5             |           |         |                                 |
| 1040         | D6526                | 4             | С         |         | first reported: 0.0004 mg/kg    |
| 1041<br>1151 | In house<br>In house | 5.2<br>3.52   |           |         |                                 |
| 1301         | D7504                | <1            |           |         |                                 |
| 1434         | D4492                | 7.8           | C,G(0.05) |         | first reported: 0.00078 mg/kg   |
| 1530         | D6526                | 11.6          | G(0.01)   |         | nier reperiod. e. eeer e nigrig |
| 1728         |                      |               | -()       |         |                                 |
| 1783         |                      |               |           |         |                                 |
| 1812         |                      | 5             |           |         |                                 |
| 6203         | D7504                | 5             |           |         |                                 |
| 9014         |                      |               |           |         |                                 |
|              | normolity.           | 0.100.051     |           |         |                                 |
|              | normality            | suspect<br>21 |           |         |                                 |
|              | n<br>outliers        | 2             |           |         |                                 |
|              | mean (n)             | 2<br>4.36     |           |         |                                 |
|              | st.dev. (n)          | 0.887         |           |         |                                 |
|              | R(calc.)             | 2.48          |           |         |                                 |
|              | st.dev.(D7504:18)    | (0.238)       |           |         |                                 |
|              | R(D7504:18)          | (0.67)        |           |         |                                 |
|              |                      |               |           |         |                                 |

Reproducibility in ASTM D7508:18 is based on a Benzene level much higher than present in sample #19021, see also §4.1.



# Determination of Nonaromatics on sample #19021; results in mg/kg

| lab              | method            | value   | mark      | z(targ) | remarks                       |
|------------------|-------------------|---------|-----------|---------|-------------------------------|
| 52               | D7504             | 455     |           | 0.29    |                               |
| 150              | D7504             | 498     |           | 0.61    |                               |
| 171              | D7504             | 375     |           | -0.30   |                               |
| 311              | D7504             | 380     |           | -0.27   |                               |
| 323              | D7504             | 363     |           | -0.39   |                               |
| 333              |                   |         |           |         |                               |
| 334              | D2360             | 310     | С         | -0.79   | first reported: 0.031 mg/kg   |
| 343              | D2360             | 561.8   |           | 1.09    | 5 <b>3</b> 3                  |
| 372              | D7504             | 450     |           | 0.25    |                               |
| 445              | D6526             | 400     | С         | -0.12   | first reported: 0.04 mg/kg    |
| 453              | D2360             | 439.597 | U U       | 0.18    |                               |
| 551              | D2360             | 324     |           | -0.68   |                               |
| 555              | D2300             |         |           | -0.00   |                               |
| 663              | D7504             | 416     |           | 0.00    |                               |
| 823              | D2360             | 362     |           | -0.40   |                               |
| 840              | D7504             |         |           |         |                               |
|                  |                   | 446.8   |           | 0.23    |                               |
| 855              | D7504             | 405     |           | -0.08   |                               |
| 862              | D7504             | 436     |           | 0.15    |                               |
| 864              | D7504             | 395     |           | -0.15   |                               |
| 865              | D7504             | 396     |           | -0.15   |                               |
| 866              | D7504             | 433     |           | 0.13    |                               |
| 870              | D7504             | 398     |           | -0.13   |                               |
| 912              | D2360             | 500     |           | 0.63    |                               |
| 913              | D7504             | 370     |           | -0.34   |                               |
| 1011             | D5917             | 424     |           | 0.06    |                               |
| 1040             | D6526             | 460     | С         | 0.33    | first reported: 0.046 mg/kg   |
| 1041             | In house          | 477     |           | 0.46    |                               |
| 1151             |                   |         |           |         |                               |
| 1301             | D7504             | 70      | C,R(0.01) | -2.58   | first reported <1             |
| 1434             | D4492             | 480.4   | C         | 0.48    | first reported: 0.04804 mg/kg |
| 1530             | D6526             | 291.6   |           | -0.93   |                               |
| 1728             |                   |         |           |         |                               |
| 1783             |                   |         |           |         |                               |
| 1812             |                   | 335     |           | -0.60   |                               |
| 6203             | D7504             | 476     |           | 0.45    |                               |
| 9014             |                   |         |           |         |                               |
|                  | normality         | ОК      |           |         |                               |
|                  | n                 | 29      |           |         |                               |
|                  | outliers          | 1       |           |         |                               |
|                  | mean (n)          | 415.80  |           |         |                               |
|                  | ( )               |         |           |         |                               |
|                  | st.dev. (n)       | 61.954  |           |         |                               |
|                  | R(calc.)          | 173.47  |           |         |                               |
|                  | st.dev.(D7504:18) | 134.221 |           |         |                               |
|                  | R(D7504:18)       | 375.82  |           |         |                               |
|                  |                   |         |           |         |                               |
| <sup>900</sup> T |                   |         |           |         | 0.007                         |
| 800 -            |                   |         |           |         | Kernel Density                |



# Determination of Refractive Index at 25°C on sample #19021;

| 1-1-       | weath a d                            |                    |          | -(4,)     |                                                                                                                               |
|------------|--------------------------------------|--------------------|----------|-----------|-------------------------------------------------------------------------------------------------------------------------------|
| lab        | method                               | value              | mark     | z(targ)   | remarks                                                                                                                       |
| 52         | <b>D</b> 4040                        |                    |          |           |                                                                                                                               |
| 150        | D1218                                | 1.4938             |          | -0.92     |                                                                                                                               |
| 171        | D1218                                | 1.4940             |          | 0.20      |                                                                                                                               |
| 311        | D1218                                | 1.4939             |          | -0.36     |                                                                                                                               |
| 323        | D1218                                | 1.49389            |          | -0.42     |                                                                                                                               |
| 333        | D1218                                | 1.4938             |          | -0.92     |                                                                                                                               |
| 334        | D1218                                | 1.49407            |          | 0.59      |                                                                                                                               |
| 343        | D1218                                | 1.4940             |          | 0.20      |                                                                                                                               |
| 372        | D1218                                | 1.4939             |          | -0.36     |                                                                                                                               |
| 445        | D1218                                | 1.4946             | R(0.01)  | 3.56      |                                                                                                                               |
| 453        | D1010                                |                    |          |           |                                                                                                                               |
| 551        | D1218                                | 1.4939             |          | -0.36     |                                                                                                                               |
| 555        | D1010                                |                    |          | 4.00      |                                                                                                                               |
| 663        | D1218                                | 1.4942             |          | 1.32      |                                                                                                                               |
| 823        | D1218                                | 1.49380            |          | -0.92     |                                                                                                                               |
| 840        | D1218                                | 1.49392            |          | -0.25     |                                                                                                                               |
| 855        | D1218                                | 1.4939             |          | -0.36     |                                                                                                                               |
| 862        | D1218                                | 1.49393            |          | -0.20     |                                                                                                                               |
| 864        | D1218                                | 1.49406            |          | 0.53      |                                                                                                                               |
| 865<br>866 | D1218                                | 1.4941             |          | 0.76      |                                                                                                                               |
| 870        | D1218                                | 1.49408            |          | 0.64      |                                                                                                                               |
| 912        | D1218<br>D1218                       | 1.49408            |          | 0.84      |                                                                                                                               |
| 912        | D1210                                | 1.4940             |          |           |                                                                                                                               |
| 1011       |                                      |                    |          |           |                                                                                                                               |
| 1040       |                                      |                    |          |           |                                                                                                                               |
| 1040       |                                      |                    |          |           |                                                                                                                               |
| 1151       | D1218                                | 1.49677            | R(0.01)  | 15.71     |                                                                                                                               |
| 1301       | D1218                                | 1.4941             | 1((0.01) | 0.76      |                                                                                                                               |
| 1434       | D1218                                | 1.4939             | С        | -0.36     | first reported: 1.4967 (at 15°C)                                                                                              |
| 1530       | D1218                                | 1.4974             | R(0.01)  | 19.24     |                                                                                                                               |
| 1728       | D1218                                | 1.49388            | 11(0.01) | -0.48     |                                                                                                                               |
| 1783       | 2.2.0                                |                    |          |           |                                                                                                                               |
| 1812       |                                      |                    |          |           |                                                                                                                               |
| 6203       |                                      |                    |          |           |                                                                                                                               |
| 9014       | D1218                                | 1.4941             |          | 0.76      |                                                                                                                               |
|            |                                      |                    |          |           |                                                                                                                               |
|            | normality                            | OK                 |          |           |                                                                                                                               |
|            | n                                    | 22                 |          |           |                                                                                                                               |
|            | outliers                             | 3                  |          |           |                                                                                                                               |
|            | mean (n)                             | 1.49397            |          |           |                                                                                                                               |
|            | st.dev. (n)                          | 0.000112           |          |           |                                                                                                                               |
|            | R(calc.)                             | 0.00031            |          |           |                                                                                                                               |
|            | st.dev.(D1218:12)                    | 0.000179           |          |           |                                                                                                                               |
|            | R(D1218:12)                          | 0.0005             |          |           |                                                                                                                               |
|            |                                      |                    |          |           |                                                                                                                               |
| 1.4978 T   |                                      |                    |          |           | 4000                                                                                                                          |
| 1.4973 -   |                                      |                    |          |           | x 3500 Kernel Density                                                                                                         |
|            |                                      |                    |          |           |                                                                                                                               |
| 1.4968 -   |                                      |                    |          |           | × 3000 -                                                                                                                      |
| 1.4963 -   |                                      |                    |          |           | 2500 -                                                                                                                        |
| 1.4958 -   |                                      |                    |          |           |                                                                                                                               |
| 1.4953 -   |                                      |                    |          |           | 2000 -                                                                                                                        |
| 1.4948 -   |                                      |                    |          |           | 1500 -                                                                                                                        |
| 1.4943 -   |                                      |                    |          |           | X 1000 -                                                                                                                      |
|            |                                      | Δ Δ Δ              | <u> </u> | <u> </u>  |                                                                                                                               |
|            |                                      | _                  |          |           |                                                                                                                               |
| 1.4933     | 333<br>372 823<br>372 823<br>372 823 | 855<br>43.4<br>340 | 343      | 334 864 2 | <u>0</u> <u>1.493</u> <u>1.495</u> <u>1.496</u> <u>1.497</u> <u>1.498</u> <u>1.495</u> <u>1.496</u> <u>1.497</u> <u>1.498</u> |
| , ,        |                                      |                    |          |           |                                                                                                                               |

## **APPENDIX 2**

#### Number of participants

1 lab in AUSTRALIA 1 lab in BELGIUM 2 labs in BRAZIL 1 lab in CANADA 6 labs in CHINA, People's Republic 1 lab in ESTONIA 2 labs in FRANCE 4 labs in GERMANY 2 labs in INDIA 1 lab in ISRAEL 1 lab in NETHERLANDS 1 lab in PORTUGAL 2 labs in ROMANIA 1 lab in SAUDI ARABIA 1 lab in SOUTH KOREA 1 lab in SPAIN 1 lab in THAILAND 1 lab in TURKEY 1 lab in UNITED ARAB EMIRATES 2 labs in UNITED KINGDOM 2 labs in UNITED STATES OF AMERICA 1 lab in VIETNAM

## **APPENDIX 3**

#### Abbreviations:

| С        | = final test result after checking of first reported suspect result |
|----------|---------------------------------------------------------------------|
| D(0.01)  | = outlier in Dixon's outlier test                                   |
| D(0.05)  | = straggler in Dixon's outlier test                                 |
| G(0.01)  | = outlier in Grubbs' outlier test                                   |
| G(0.05)  | = straggler in Grubbs' outlier test                                 |
| DG(0.01) | = outlier in Double Grubbs' outlier test                            |
| DG(0.05) | = straggler in Double Grubbs' outlier test                          |
| R(0.01)  | = outlier in Rosner's outlier test                                  |
| R(0.05)  | = straggler in Rosner's outlier test                                |
| Е        | = possibly an error in calculations                                 |
| W        | = test result withdrawn on request of participant                   |
| ex       | = test result excluded from statistical evaluation                  |
| n.a.     | = not applicable                                                    |
| n.e.     | = not evaluated                                                     |
| n.d.     | = not detected                                                      |
| fr.      | = first reported                                                    |
| SDS      | = Safety Data Sheet                                                 |
|          |                                                                     |

#### Literature:

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 W. Horwitz and R. Albert, J. AOAC Int., <u>79</u>, 3, 589, (1996)
- 3 ASTM E178:02
- 4 ASTM E1301:03
- 5 ISO13528:05
- 6 ISO 5725:86
- 7 ISO 5725, parts 1-6, 1994
- 8 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 9 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 10 IP 367:84
- 11 DIN 38402 T41/42
- 12 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 13 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 14 Analytical Methods Committee Technical brief, No 4, January 2001.
- 15 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry 2002, <u>127</u>, 1359-1364 (2002)
- 16 Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, <u>25(2)</u>, 165-172, (1983)