Results of Proficiency Test Nickel Release June 2019

Organised by:Institute for Interlaboratory Studies
Spijkenisse, the NetherlandsAuthor:ing. M. Meijer
ing. A.S. Noordman-de Neef & ing. R.J. Starink
iis19V03

October 2019

CONTENTS

1		3
2	SET UP	3
2.1	QUALITY SYSTEM	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	4
2.4	SAMPLES	4
2.5	ANALYZES	5
3	RESULTS	5
3.1	STATISTICS	6
3.2	GRAPHICS	6
3.3	Z-SCORES	7
4	EVALUATION	7
4.1	EVALUATION PER SAMPLE	7
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	8
4.3	COMPARISON OF THE PROFICIENCY TEST OF JUNE 2019 WITH PREVIOUS PTS	9
4.4	EVALUATION OF THE ANALYTICAL DETAILS	9
5	DISCUSSION	10
6	CONCLUSION	10

Appendices:

1.	Data, statistical and graphical results	11
2.	Determination of Nickel Release and some Analytical Details on subsamples #19555	17
3.	Other reported Analytical Details on sample #19555	19
4.	Detailed description on how sample #19556 was measured	21
5.	Number of participants per country	23
6.	Abbreviations and literature	24

1 INTRODUCTION

Nickel has always been used in various applications, as a pure metal, as a plated substance on another metal or as an alloy. Nickel applications usually do not give problems, but when Nickel comes into prolonged and direct contact with the human skin, sensitization can occur. When a person becomes sensitive to Nickel, even the smallest amounts can provoke an allergic reaction. By this, Nickel is the most frequent cause of contact allergy in Europe. Both the contact itself (sometimes enhanced by damaged skin) and skin conditions as sweat can cause the body to be exposed to Nickel. In order to decrease the amount of people that become sensitized, Nickel containing items that are used in prolonged human contact are tested for Nickel release. These products involve products like jewelry in piercings (ear rings), other jewelry, watches or clothes fasteners, such as buttons and belts.

Since 2014, the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the determination of Nickel release every year. During the annual proficiency testing program 2018/2019, it was decided to continue the proficiency test for the analysis of Nickel release. In this interlaboratory study 129 laboratories in 30 different countries registered for participation. See appendix 5 for the number of participants per country. In this report, the test results of the 2019 proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. It was decided to send three identical non-coated metal plates labelled #19555 positive on Nickel release and one piece of a metallic chain consisting of 6 links labelled #19556 for surface determination only. The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation. Also, some analytical details were asked.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on a regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

Nickel Release Determination

The batch of Nickel containing material was purchased from a local supplier and consisted of square metal pieces with a hole in one of the corners. The pieces were solid metal, prepared from one alloy and not plated or coated. The dimensions of each item were approximately 2x2x0.2cm and the hole had a diameter of approximately 5mm. The sample was labelled #19555 and was packed per three items in a plastic bag. Twenty-four stratified randomly selected (sub)samples were tested using EN1811:11+A1:15 and single test results were averaged per three to check the homogeneity of the batch. The test results of the homogeneity tests are shown in table 1.

	Nickel Release (µg/cm²/week) averaged per 3 items
sample #19555-1	2.12
sample #19555-2	2.21
sample #19555-3	2.25
sample #19555-4	2.18
sample #19555-5	2.18
sample #19555-6	2.22
sample #19555-7	2.16
sample #19555-8	2.16

Table 1: homogeneity test results of subsamples #19555

From the above test results the repeatability was calculated and compared with 0.3 times the target reproducibility, estimated from the Horwitz equation, in agreement with the procedure of ISO13528, Annex B2, in the next table.

	Nickel release (µg/cm²/week)
r (observed)	0.11
reference method	Horwitz *)
0.3 x R (reference method)	0.26

Table 2: evaluation of the repeatability of subsamples #19555

*) The Horwitz formula is converted to $\mu g/cm^2\!/week$ unit instead of a concentration

The calculated repeatability was in agreement with 0.3 times the target reproducibility estimated from the Horwitz equation. Therefore, homogeneity of the (sub)samples #19555 was assumed.

Surface Determination

A batch of a metal chain was obtained from a local supplier. From this batch, 150 plastic bags were filled each with six links of the chain. The samples were labelled #19556. No homogeneity tests were done because only surface determination has been requested for this sample. However, each sample was weighed in advance to ensure no large differences in surfaces.

To each of the participating laboratories three items of sample #19555 and one sample #19556 were sent on May 29, 2019.

2.5 ANALYZES

The participants were requested to determine Nickel Release on sample #19555 and to determine surface only on sample #19556, applying the analysis procedure that is routinely used in the laboratory. It was also requested to report some analytical details.

It was explicitly requested to treat the samples as if they were routine samples and to report the test results using the indicated units on the report form and not to round the test results but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results, a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the appropriate reference test methods that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and original test results are placed under 'Remarks' in the test result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the results of the statistical evaluation should be used with due care.

According to ISO5725 the original test results per determination were submitted to Dixon's, Grubbs' and/or Rosner's outlier tests. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value, the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT the criterion of ISO13528, paragraph 9.2.1 was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. The Kernel Density Graph is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve was projected over the Kernel Density Graph for reference.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

The target standard deviation was calculated from the target reproducibility by division with 2.8. In case no literature reproducibility was available, other target values are used. In some cases, a reproducibility based on former iis proficiency tests could be used.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

```
z (target) = (test result - average of PT) / target standard deviation
```

The z (target) scores are listed in the test result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. The usual interpretation of z-scores is as follows:

 $\begin{aligned} |z| < 1 & good \\ 1 < & |z| < 2 & satisfactory \\ 2 < & |z| < 3 & questionable \\ 3 < & |z| & unsatisfactory \end{aligned}$

4 EVALUATION

During the execution of this proficiency test no problems were encountered. Three participants reported test results after the reporting deadline and two other participants did not report any test results at all. In total 127 participants reported 251 test results for Nickel Release and Surface Determination. Observed were 7 outlying test results, which is 2.8%. In proficiency studies outlier percentages of 3% - 7.5% are quite normal.

Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

4.1 EVALUATION PER SAMPLE

In this section, the reported test results are discussed per sample. All statistical results reported on the samples are summarised in appendix 1. The abbreviations used in these tables are listed in appendix 6.

Test method EN1811:11+A1:15 does not have a true precision statement that mentions a repeatability and/or a reproducibility. In Annex A is mentioned that the measurement uncertainty in a 2008 interlaboratory study was 46%, while in Annex B is stated "The relative test method reproducibility in this ILC was 33.3%". Both variations could not be met by far in previous iis PTs. Therefore, it was decided to use a target reproducibility derived from the Horwitz equation. This target is dependent on the measured Nickel concentration, surface and ranges from 54% at 0.3 µg Ni/cm²/week up to 32% at 10 µg Ni/cm²/week.

Sample #19555:

<u>Nickel Release:</u> This determination may be problematic at the low concentration level of 1.19 µg/cm²/week. Five statistical outliers were observed and nine other test results were excluded on the basis of the surface determination of the (sub)samples.

The calculated reproducibility after rejection of the suspect data is not in agreement with the target reproducibility estimated from the Horwitz equation. The low Nickel Release level may (partly) explain the relatively large variation.

Sample #19556:

<u>Surface Determination</u>: This determination on the chain may not be problematic. Two statistical outliers were observed in the reported range of 6.61-11.03cm². No official test method exists for Surface Determination. Therefore, no z-scores were calculated. The variation for this sample of 7% is in line with the observed variation in previous PT's in which the Surface Determination was evaluated (4.9-13%), but is large compared to the variation of the Surface Determination of the much simpler shaped sample #19555 (1.1%).

4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the calculated reproducibility (2.8 * standard deviation) as found for the group of participating laboratories and the target reproducibility estimated from the Horwitz equation in the next table.

Parameter	unit	n	average	2.8 * sd	R (target)
Nickel Release	µg/cm²/week	112	1.19	0.99	0.53
Surface	cm ²	107	9.47	0.28	n.a.

Table 3: reproducibilities of test results on sample #19555

From table 3 it can be concluded, without further statistical calculations, that the group of participating laboratories had problems with the analyzis of Nickel Release when compared to the Horwitz target reproducibility.

Parameter	unit	n	average	2.8 * sd	R (target)
Surface Determination	cm ²	123	8.96	1.74	n.a.

Table 4: reproducibility of test results on sample #19556

4.3 COMPARISON OF THE PROFICIENCY TEST OF JUNE 2019 WITH PREVIOUS PTS

	June 2019	May 2018	May 2017	May 2016	May 2015
Number of reporting laboratories	127	113	122	125	123
Number of test results	126	112	122	124	119
Number of statistical outliers	5	4	14	8	11
Percentage outliers	4.0%	3.6%	11%	6.5%	9.8%

Table 5: comparison with previous proficiency tests (Nickel Release determination only)

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

In table 6 the observed uncertainties in this PT are compared with the uncertainties as observed in the previous PTs.

	June 2019	May 2018	May 2017	May 2016	2015-2014
Nickel Release	30%	44%	26%	18%	27-31%
Surface Determination	1.1 - 7%	1.3 - 13%	1.3 - 6.7%	2.3 - 4.9%	1.7-10%

Table 6: comparison of uncertainties (relative in %) of current PT with previous PTs

The uncertainty of the Nickel Release determination is in line with the average uncertainty from the previous years.

Also the uncertainty of the Surface Determinations is in line with the average uncertainty of previous samples for Surface Determination.

4.4 EVALUATION OF THE ANALYTICAL DETAILS

For the <u>three (sub)samples #19555 (Nickel Release)</u> the following can be summarized from the various analytical details provided by the participants (see appendix 2 and 3):

- a majority of 95% of the reporting participants used all three plates for the Nickel Release determination.
- about 50% of the reporting participants have done a pre-treatment of the test vessels, while 8% of the reporting participants have used new or disposable test vessels.
 Remarkably, 31% of the reporting participants have not done any pre-treatment and 9% did not answer this question, see appendix 3.
- a majority of around 70% of the reporting participants used a ratio of approximately 1mL test solution per cm² sample surface area. Surprisingly a few participants reported to have used between two and ten times as much volume of test solution than sample area.
- in total 117 laboratories (92%) reported the average surface area, see appendix 2. The average surface area varied from 5.6 to 16.7cm².
- in total 105 laboratories (83%) reported to be accredited for this test in accordance with ISO/IEC17025.

For <u>sample #19556 (Surface Determination</u>) only one question was requested: a detailed description on how the surface area was measured and calculated which was answered by 76% of the reporting participants. A divers variety of methods was given, see appendix 4.

5 DISCUSSION

Possible effects of the various analytical details on Nickel Release were investigated.

The range for the surface area of (sub)samples #19555 narrowed between 9.2 to 9.8cm², after exclusion of ten statistically outlying data. The observed RSD of 1.1% is somewhat lower than in the previous PT (1.3%). In this PT the overall RSD for Nickel Release for sample #19555 is 30%. This is the sum of the variation in contact surface determination and the variation in the Nickel determination. It can be concluded that the variation in the surface determination of this simple squared object does not affect the overall variation of the Nickel Release determination.

The variation on the Nickel Release results for the individual items was huge; from 0.4 up to 149 RSD (%). Only 28 participants had an RSD in agreement with the target repeatability standard deviation of 4%, estimated from EN1811:11+A1:15 (33.3% / 2.8 / 3). However, when evaluating the test results of only those 28 participants the average and variation are not significant different from the total group, see appendix 1.

Some participants used new or disposable test vessels for which pre-treatment is not necessary. Test vessels that have been used before should be pre-treated with 5% Nitric acid for at least 4 hours, see paragraph 6.4 of EN1811:11+A1:15. This is necessary to remove any Nickel present from earlier use. When used vessels are not pre-treated, there will be a risk that the test result for Nickel Release will be higher. However, the investigated effect of pre-treatment vs. non pre-treatment was very low and not significant.

It was observed that a number of participants possibly reported the end volume after dilution, e.g. 25mL. Test method EN1811:11+A1:15 prescribes the amount of test solution to be used to be 1mL per cm² surface area, which in this PT is between 9-10mL per item. Not all participants used this ratio. However, when evaluating the test results of only those participants that used a 1:1 ratio for test solution: surface area than again the average and variation are not significant different from the total group, see appendix 1.

6 CONCLUSION

It can be concluded that a large group of the participants have a problem with the determination on Nickel Release, each participating laboratory needs to evaluate its performance in this study and decide about any corrective actions if necessary. Therefore, participation on a regular basis in this scheme could be helpful to improve the performance and increase the quality of the analytical results.

Determination of Nickel Release on sample #19555; average result of three replicates in µg/cm²/week

lab	method	value	mark	z(targ)	remarks
110	In house	1.2729	ex	0.43	outlier in sample surface, see appendix 2
210					
230	EN1811	1.965		4.12	
348	EN1011 + A1 EN1811 + A1	1.97		-0.63	
362	EN1811 + A1	0.943	ex	-1.33	outlier in sample surface, see appendix 2
523	EN1811 + A1	1.7615	<u>o</u> x	3.04	
551	EN1811	0.9354		-1.37	
623	EN1811 + A1	1.81	С	3.30	first reported 2.38
840	EN1811 + AC	0.95		-1.29	
2102	EN1811	1.348		0.83	
2115	EN1811	0.765		-2.28	
2117	EN1811 + A1 EN1811	1.2800		0.47	
2129	EN1811	0.037		-1.30	
2135	EN1811 + A1	4.697	R(0.01)	18.71	
2137	EN1811 + A1	2.551	R(0.05)	7.25	
2138	EN1811	1.394	. ,	1.08	
2139	EN1811 + A1	0.867		-1.74	
2165	EN1811	1.070		-0.65	
21/2	EN1811 + A1	1.061		-0.70	
2104	EN1011 + A1 EN1811 + A1	1.042		-0.60	
2201	EN1811	0.866		-1 74	
2215	EN1811 + A1	1.266		0.39	
2216	EN1811	1.665		2.52	
2229	EN1811 + A1	1.19		-0.01	
2232	EN1811 + A1	1.163		-0.16	
2238	EN1811 + AC	1.26		0.36	
2241	EN1811	1.868		3.61	
2247	EN1811 $EN1811 \pm A1$	0.94	C P(0.01)	-1.35	first reported 2.687
2255	EN1811	0.878	C, R(0.01)	-1.68	list reported 2.007
2256	EN1811 + A1	1.088		-0.56	
2265	EN1811	2.15		5.11	
2272	EN1811 + A1	0.66		-2.84	
2289	EN1811 + A1	1.061		-0.70	
2290	EN1811 + A1	1.225		0.17	
2293	In house	1.9002		3.78	
2295	EN1811	0.67	ex	-2.79	outlier in sample surface, see appendix 2
2301	EN1011 EN1811 + AC	1.100	AV	-0.15	outlier in sample surface, see appendix 2
2310	EN1811 + AC	0.9017	CA .	-1 55	oulier in sample surface, see appendix 2
2330	EN1811	0.9099		-1.51	
2347	EN1811 + A1	1.90		3.78	
2350	EN1811 + A1	1.241		0.26	
2352	EN1811	1.271		0.42	
2357	EN1811	1.491	0	1.59	first service to 1.0.005
2363	EN1811 + A1	1.70	C	2.71	first reported 2.205
2366	EN1011 + A1 EN1811 + A1	1.719		2.01	
2369	EN1811 + A1	1.000	С	2 99	first reported 2 109
2370	EN1811	1.23	0	0.20	
2374	EN1811	1.63	С	2.34	first reported 2.06
2375	EN1811 + A1	1.12		-0.39	
2377	EN1811 + A1	1.16		-0.17	
2378	EN1811	1.310		0.63	
2379	EN1811	1.504		1.66	
2380	EN 1811 EN 1811	1.069		-0.00	
2382	EN1811 + A1	1 28		-1.03	
2385	EN1811	2.52	R(0.05)	7.09	
2390	EN1811 + A1	0.65		-2.90	
2406	EN1811 + A1	1.08		-0.60	
2410		1.62		2.28	
2415	EN1811 + A1	1.40		1.11	
2429	EN1811 + A1	0.998		-1.04	
2442	EN1811 + A1	0.817		-2.00	
2409	EN1011	1 14		-1.10 _0.28	
2402	EN1811 + A1	1.033		-0.20	
2482	EN1811 + A1	1.392		1.07	
2489	EN1811	0.966	ex	-1.21	outlier in sample surface, see appendix 2
2492	EN1811	2.80	C,R(0.05)	8.58	first reported 2.55
2495	EN1811	1.191		-0.01	

lah	method	value	mark	z(tara)	remarks	
2496	EN1811 + A1	1,142	mark	-0.27	Tomarka	
2497	EN1811 + AC	26.06	ex	132.75	outlier in sample surface se	e appendix 2
2500	EN1811	1.1032		-0.48		
2511	EN1811	0.740		-2.41		
2514	EN1811	0.924		-1.43		
2522	EN1811 + A1	1.14		-0.28		
2532	EN1811	0.992		-1.07		
2553	EN1811	1.176	ex	-0.09	outlier in sample surface, se	e appendix 2
2560	EN1811	0.714		-2.55		
2563	EN1811	1.39		1.06		
2582	EN1811	0.9527		-1.28		
2590	EN1811	0.8001		-2.09		
2624	EN1811 + A1	0.66		-2.84		
2629	EN1811	1.326		0.71		
2641	EN1811	0.971		-1.18		
2652	EN1811	1.2118		0.10		
2657	EN1811 + A1	1.138		-0.29		
2674	EN1811	1.257		0.35		
2703	EN1811	0.344	С	-4.53	first reported 0.47027	
2705	EN1811 + AC	1.182		-0.06		
2/19	In house	1./		2.71		
2720	EN1811 + A1	1.027		-0.88		
2741	EN1811 + A1	0.79		-2.15		
2758	EN1811	1.627		2.32		
2804	EN1811	0.9181		-1.46		
2818	EN1811 + A1	1.011		-0.97		
2829	EN1811 + AC	0.903		-1.54		a ann an diu O
2832	EN1811 + A1	0.22	ex	-5.19	outlier in sample surface, se	e appendix 2
2833				1.04		
2000		0.029		-1.94		
2004		0.0606		2.75		
2070	$EN1811 + \Delta1$	0.9090		-1.19		
3116	$EN1811 + \Delta1$	1 1577		-0.10		
3118	EN1811	1.1377		2.06		
3146	EN1811 + A1	0.842		-1.87		
3150						
3153	FN1811 + A1	0 9604		-1 24		
3154	EN1811	1 053		-0.74		
3160	EN1811 + A1	0.62	С	-3.06	first reported 36.23	
3172	EN1811	1.22		0.15	•	
3179	EN1811 + A1	1.79		3.19		
3182	EN1811	1.540		1.86		
3185	EN1811 + A1	0.989		-1.09		
3191	EN1811 + A1	1.843		3.47		
3197	EN1811 + A1	0.91		-1.51		
3209	EN1811	1.32		0.68		
3210	EN1811	0.89		-1.61		
3214	EN1811 + A1	1.339		0.78		
3218	EN1811	0.985	ex	-1.11	outlier in sample surface, se	e appendix 2
3228	EN1811 + A1	1.17		-0.12		
3237	EN1811	0.9883		-1.09		
3246	EN1811 + A1	1.077		-0.62		
3248	EN1811	1.018		-0.93		
					only with ratio 1:1	oniy KSD <4% between
	normality	OK			OK	
	normanity	112			Q7	28
	outliers	112 5 +00y			2	20 1
	moon (n)	J T 90X 1 102			∠ 1 103	1 084
	nicali (II) st.dov. (n)	1.192 0.3517	RSD-20%		1.130 0.3316 PCD-39%	1.004 0.3003 RCD-220/
	B(calc)	0.0017	100-00%		0.0010 1.00-20%	0.841
	st dev (Horwitz)	0.303			0.020	0.041
	R(Horwitz)	0.525			0.525	0.484
Compa	re	0.020			0.020	0.707
compu	R(EN1811:11+A1:15)	0.397			0.397	0.361
	· · · · · · · · · · · · · · · · · · ·					

Determination of Surface on sample #19556; results in cm²

lab	method	value	mark	z(targ)	remarks
110	see appendix 4	9.333			
210					
230	see appendix 4	8.517			
339	see appendix 4	8.74			
348	see appendix 4	8.585			
362	see appendix 4	8.809			
523	see appendix 4	8.9190			
623	see appendix 4	10 42			
020	See appendix 4	10.42			
040 2102	soo appondix /	 8 826			
2112	see appendix 4	7 78			1 ring= 1 296cm ²
2117	see appendix 4	8 2597			1 mg 1.2500m
2129	see appendix 4	8.95			
2132	see appendix 4	9.489			
2135	see appendix 4	9.75			
2137	see appendix 4	9.683	С		first reported 21.85
2138	see appendix 4	7.872			
2139	see appendix 4	8.33			
2165	see appendix 4	8.720			
2172	see appendix 4	0.090			
2204	see appendix 4	8.62			
2213	see appendix 4	9.06			
2215	see appendix 4	9.095			
2216					
2229	see appendix 4	10.04			
2232	see appendix 4	8.913			
2238	see appendix 4	8.96			
2241	see appendix 4	8.52			
2247	see appendix 4	9.05	0		first new autor of 4. E.4. man all aris
2250	see appendix 4	9.00	C		first reported 1.51 per chain
2255	see appendix 4	8 6455			
2265	see appendix 4	8 938			
2272	see appendix 4	8.294			
2289	see appendix 4	9.12			
2290	see appendix 4	8.44			
2293	see appendix 4	9.1			
2295	see appendix 4	8.7			
2301	see appendix 4	8.779			
2310	see appendix 4	8.31			
2311	see appendix 4	9.200			
2330	see appendix 4	0.950 0.14			
2350	see appendix 4	8.238			
2352	see appendix 4	9.271			
2357	see appendix 4	9.14			
2363	see appendix 4	9.10			
2365	see appendix 4	9.055			
2366	see appendix 4	9.02			
2369	see appendix 4	9.14			
231U 2271	see appendix 4	0.70			
2374	see appendix 4	9.1			
2377	see appendix 4	8.90			
2378	see appendix 4	9.391			
2379	see appendix 4	10.249			
2380	see appendix 4	8.70			
2381	see appendix 4	10.191			
2382	see appendix 4	9.152			
2385	see appendix 4	8.4			
2390	see appendix 4	8.94			
2400	see appendix 4	8.725			
2410	see appendix 4	9.20 8.43			
2429	see appendix 4	9 23			
2442	see appendix 4	9.0			
2459	see appendix 4	9.046			
2462	see appendix 4	8.874			
2475	see appendix 4	10.07			
2482	see appendix 4	9.42			
2489	see appendix 4	9.06			
2492	see appendix 4	9.318			
2490	see appendix 4	10.17			

lab	method	value	mark	z(targ)	remarks
2496	see appendix 4	8 815		_(turg/	Tomano
2497	see appendix 4	7 511			
2500	see appendix 4	8 8709			
2511	see appendix 4	8 86			
2514	see appendix 4	10 13			
2522	see appendix 4	8 12			
2532	see appendix 4	9.066			
2553	see appendix 4	8.76			
2560	see appendix 4	9.068			
2563	see appendix 4	9.14			
2582	see appendix 4	8.4475			
2590	see appendix 4	7.6859			
2624	see appendix 4	10.18			
2629	see appendix 4	7.161	DG(0.05)		
2641	see appendix 4	8.672			
2652	see appendix 4	9.121207			
2657	see appendix 4	10.149			
2674	see appendix 4	9.110			
2703	see appendix 4	9.074562637			
2705	see appendix 4	9.167			
2719	see appendix 4	8.8			
2720	see appendix 4	9.06			
2741	see appendix 4	9.52			
2758	see appendix 4	7.87			
2804	see appendix 4	8.4/1			
2818	see appendix 4	8.79			
2829	see appendix 4	7.821			
2832	see appendix 4	8.85			
2833	and appendix 1				
2000	see appendix 4	9.0			
2004	see appendix 4	0.49			
2070	see appendix 4	2.009 9.73			
3100	see appendix 4	0.73			
3118	see appendix 4	8 51833			
3146	see appendix 4	9 200			
3150	see appendix 4	9.91			
3153	see appendix 4	9.83			
3154	see appendix 4	6 61	C DG(0.05)		first reported 15 43
3160	see appendix 4	10.33	0,20(0.00)		
3172	see appendix 4	8.8601			
3179	see appendix 4	8.9825			
3182	see appendix 4	8.481			
3185	see appendix 4	8.86			
3191	see appendix 4	7.5	С		first reported 125
3197	see appendix 4	8.75			
3209	see appendix 4	8.58			
3210	see appendix 4	8.8546			
3214	see appendix 4	8.783			
3218	see appendix 4	8.670			
3228	see appendix 4	9.02			
3237	see appendix 4	7.91			
3246	see appendix 4	8.41 0.042			
3248	see appendix 4	9.943			
	normality	suspect			
	n	123			
	outliers	2			
	mean (n)	8.9572			
	st.dev. (n)	0.62056	RSD=7%		
	R(calc.)	1.7376			
	st.dev.(target)	n.a.			
	R(target)	n.a.			

Determination of Nickel Release and some Analytical Details on subsamples #19555

lab	value	value	value	RSDr	area of sample used	mark	volume test	ratio test solution vs
lab	plate 1 (µg/cm2/	plate 2 (µg/cm2	plate 3 (µg/cm2	(%) calc.	in the calculation for Ni Release (cm ²)	mark	solution (mL)	sample area (mL/cm ²)
	week)	/week)	/week)	by iis	=	B (0.04)		
110	1.0392	1.3693	1.4103	16.0	7.904	R(0.01)	8.0	1
230	1 888	1 914	2 094	57	9.55		10	 1·10
339	2.17	1.72	2.01	11.6	9.17		9.2	1:1
348	1.187	1.266	0.773	24.6	9.45		25	2.65
362					9.92	R(0.05)	10	1.0
523	1.5914	1.8692	1.8238	8.5	9.45		13	1.38
551	0.6098	0.5676	1.6288	64.2	9.47		15	1.58
623 840	2.15	2.42	2.57	8.9 3.8	9.5 0.41		9.5 10	1:1
2102	0.99	1 732	1 162	24.6	9.41		95	1.1
2115		0.805	0.735	6.4	9.286		12	1:1
2117	0.9503	1.5372	1.3524	23.4	9.55		12	1.26
2129	0.68	1.02	0.81	20.5	9.62		14	1.66
2132	1.0882	0.9906	0.7317	19.7	9.525		9.5	1:0.997
2135	12.79	0.831	0.47	149.3	9.44		40	4
2137	2.579	1 376	2.505	1.4	9.5		10	1.1
2139	0.689	1.299	0.613	43.4	9.4		15	1:1.5
2165	1.287	1.066	0.848	20.6	9.52		10	1:0.952
2172	1.056	0.9231	1.204	13.2	9.52		10	1:1
2184	1.032	1.190	0.906	13.6				
2201	1.119	0.906	1.160	12.8	9.5		9.5	1:1
2213	0.916	0.854	0.830	5.1 14.0	9.41		12.5	1.06
2215	1.554	1.052	2 224	30.1	9.39		a a	1.00
2229	1.34	1.09	1.15	10.9	9.51		9	0.95
2232	1.156	1.160	1.173	0.8	9.457		9.5	1:1
2238	1.011	1.619	1.166	25.0	9.3		9.3	1:1
2241	2.748	1.766	1.089	44.7	9.41		10.5	1:1
2247	1.07	0.91	0.85	12.1	9.52		10	1:1
2250	3.17	3.35	3.08	4.3	9.42		10	1.0616
2255	0.002	0.070	0.075	0.4 12 7	9.20		10	1.1
2265	2 14	2.95	1.36	37.0	9.46		15	1.1 5
2272	0.74	0.84	0.40	34.9	9.42		10	1:1
2289	0.976	1.490	0.719	37.0	9.7		9.7	1:1
2290	1.470	0.983	1.221	19.9				
2293	1.9283	2.1022	1.6702	11.4	9.49		9.5	1:1
2295	0.09	0.08	0.00	3.1 5.4	10	R(0.01)	20	2:1
2310	1.125	1.130	1.230	5.4 6.2	8.9	R(0.01)	9	 1·1
2311	0.7773	1.0932	0.8346	18.7	9.42		9.5	1:1
2330	0.9384	0.8937	0.8975	2.7	9.4459		10	1:1
2347	1.74	2.01	1.95	7.5				
2350	0.647	1.287	1.789	46.1	9.393		10	1:1
2352	1.053	1.281	1.478	16.7	9.42		9.45	 1·1
2363	2 184	2 182	2 250	23.2 1.8	9.47		95	1.1
2365	1.298	1.939	1.919	21.2	9.51		9.51	1:1
2366	1.770	1.807	1.974	5.9	9.45		9.5	1:1
2369	1.589	1.721	1.947	10.3	9.4321		10	1:1
2370	1.21	1.22	1.26	2.2	9.41		10	1:1
2374	1.72	1.59	1.58	4.8	9.53		15	25:9.53
2375	0.93	1.09	0.78	7.5 45.6	9.43		10	1.1
2378	1.462	1.311	1.157	11.6	9.47		9.50	
2379	1.873	1.610	1.031	28.6	9.43		10	20:1
2380	1.118	1.059	1.030	4.2	9.53		10	1:1
2381	0.983	1.009	0.992	1.3	9.55		10	1:1
2382	1.29	1.28	1.27	U.8				
∠382 2300	2.52 0.64	∠.39 0.60	∠.00 0.61	ວ.∠ 6.2	9.5		12 Q 2	1.1.20 1·1
2406	1.06	1.11	1.06	2.7	9.2 9.54		9.6	1:1
2410	1.58	1.51	1.77	8.3	9.49		12	1.26:1
2415	1.46	1.37	1.38	3.5	9.66		10	1:1
2429	0.934	1.096	0.963	8.7	9.52		9.5	1:1
2442	0.839	0.835	0.778	4.2	9.49		10	10
2459	0.969	0.972	0.986	0.9 1 2	9.48		17 10	∠:1 1.06
2402 2475	0.98	1.10	1.14	4.6	9.4 Q / A		9.48	1
2482	1.010	1.651	1.515	24.3	9.28		9.28	1:1

lab	value plate 1 (µg/cm2/	value plate 2 (µg/cm2	value plate 3 (µg/cm2	RSDr (%) calc.	area of s in the cal Ni Releas	ample used culation for se (cm²)	mark	volume test solution (mL)	ratio test solution vs. sample area (mL/cm ²)
2490	week)	/week)	/week)			0.06	D(0.01)	10	10:5 10
2409	2 097	0.92	0.93	1.2		9.90	R(0.01)	10	10.5-10
2492	0.685	1 159	1 728	43.9		9.48		12	1
2496	1.400	0.592	1.435	41.7				10	10:9.3
2497	12.88	1.09	64.31	128.8		9.06	R(0.05)	50	5
2500	1.1236	1.1606	1.0254	6.3		9.56	,	10	1:1
2511	0.790	0.660	0.760	9.2					
2514	0.925	1.022	0.824	10.7		9.6		9.6	1:1
2522	1.12	1.23	1.08	6.8		9.43		10	1:1
2532	1.28	0.956	0.74	27.4		9.51		20	25:9.5
2553	1.182	1.166	1.179	0.7		5.574	R(0.01)	15	1:3
2562	0.749	0.000	0.712	4.0 10.6		9.490		12	1.3.1
2582	0.9696	0.9459	0.9427	10.0		9.450		9	10.5-10
2590	0.8295	0 7933	0 7776	3.3		9 43		20	2.1
2624	0.79	0.39	0.80	35.4		9.41		13	1.4
2629	1.448	1.182	1.349	10.1		9.6		25	5
2641	0.966	0.960	0.987	1.5		9.42		10	1
2652	1.0833	1.2188	1.3333	10.3		9.6		9.6	1:1
2657	1.338	0.946	1.129	17.2		9.259		9.0	0.972
2674	1.097	1.425	1.250	13.1		9.58		15	1.57:1
2703	0.34869		0.33848	2.1		9.75		8	1:1.2
2705	1.527	1.053	0.968	25.5		9.5		100	10
2719	1.7	1.055	0.008	28		0.8		0.8	 1 · 1
2720	0.689	0.833	0.990	2.0		9.0		10	1.1
2758	1.717	1.479	1.685	7.9		9.43		10	1.2
2804	0.9892	0.8584	0.9070	7.2		9.5		9.5	1:1
2818	0.887	1.208	0.937	17.1		9.54		9.54	1.0
2829	0.715	0.791	1.204	29.1		9.59		10	1:1
2832	0.14	0.36	0.15	57.3		9	R(0.01)	11	1.2
2833									
2858	0.724	0.882	0.882	11.0		9.5		10	1:1
2804	1.05//	1.7540	1.7115	2.8 11.0		9.29		9.3	1:1
3100	1 116	0.9004	0.942	14.9		9.50		95	1.1
3116	0 7410	0.9925	1 745	45.1		9.36		10	1.1
3118	1.5742	1.5921	1.5687	0.8		9.27		10	1.08
3146	0.821	0.863		3.5		9.5		9.5	1:1
3150	0.788	1.89	12.13	126.7		16.74	R(0.01)	17	1:1
3153	0.9691	0.9953	0.9167	4.2		9.534		9.5	1:1
3154	1.54	0.85	0.77	40.2		9.52		50	5.25
3160	0.78	0.46	0.62	25.8		9.5015		10	1.05
3172				40.4		9.257		9.25	1:1
3182	0.90	2.17	2.23	40.1 8.2		9.45		00 047	5.5 1·1
3185	1.400	1.001	0.928	55		9.47		10	1.1
3191	1.332	1.987	2.209	24.7		9.45		9.45	1:1
3197	0.91	0.96	0.86	5.5		9.5		9.5	1:1
3209	1.33	1.31	1.32	0.8		9.59		10	1:1
3210	0.85	1.28	0.55	41.1		9.435		10	1.06
3214	1.074	1.578	1.368	18.9		9.52		9.52	1:1
3218	0.935	1.170	0.850	16.8		9.1	R(0.05)	9.1	1:1
3228	1.16	1.26	1.10	6.9		9.52		9.52	1:1
3237	0.9900	0.8950	1.0800	9.4					
3240	1.222	1.277	0.733	27.8		9.44		10	1:1
5240	1.029	1.007	1.010	1.1		9.03		5.55	I
	normality				suspect				
	n				107				
	outliers				10				
	mean (n)				9.468	DSD-1 10/			
	si.uev. (n) R(calc.)				0.1007	rod-1.1%			

Other rel	ported Anal	vtical Details	for sample	#19555
		yuuu Dolano	TOI Sumple	<i>i</i> # 10000

lab	ISO/IEC	pre-cleaning of	cleaning solution	time of cleaning (hours)
110	1/0251 accredited ?	test vessel?		
110	Yes	NO		
210	 			
230	Yes	 V	 Nitria a sid 200/	
339	res	res		One hight
040 262	NO	NU		
502	 No	 Voo	 Nitrio agid 5%	
523	NU	Yes	Nitric acid 20%	24 A
623	Ves	No		4
8/0	Ves	Vec	 Nitric acid 5%	24
2102	Ves	Ves	Nitric acid 5%	24 >/
2102	Yes	No		
2110	Ves	No		
2129	Yes	No		
2132	Yes	No		
2135	Yes	No		
2137	Yes	Yes	Nitric acid 5%	6
2138	Yes	Other	New/disposable vessel	
2139	Yes	Other	New/disposable vessel	
2165	Yes	No		
2172	Yes	Yes	Nitric acid 4M	4
2184				
2201	Yes	Yes	Nitric acid dilute	4
2213	Yes	No		
2215	Yes	Yes	Nitric acid 5%	24
2216	Yes	Yes	Nitric acid ~5%	>4
2229	Yes	Yes		
2232	Yes	Yes	Nitric acid 5%	>4
2238	Yes	Yes	Nitric acid 10%	24
2241		Other	New/disposable vessel	
2247	Yes	No		
2250	Yes	No		
2255	Yes	Yes	Nitric acid 5%	4
2256	Yes	Yes	Nitric acid diluted	>8
2265	No	No		
2272	Yes	Other	New/disposable vessel	
2289	Yes	No		
2290	Yes			
2293	No	No		
2295	Yes	Other	New/disposable vessel	
2301	 Voo	 Voo	 Nitrie asid diluted & Dl water	 A
2310	Yes	Yes	Nitric acid diluted & Di Water	4
2311	No	Yos	Nitric acid 20%	4
2330		165		-0
2347	Ves	No		
2350	Ves	Other	New/disposable vessel	
2357	Ves	No		
2363	Yes	Yes	Nitric acid 5%	4
2365	Yes	Yes	Nitric acid 5%	4
2366	Yes	Yes	Nitric acid 5% & DI water	4
2369	Yes	No		
2370	Yes	Yes	Nitric acid 69%	0.33
2374	No	Yes	degreasing solution	
2375	Yes	Yes	Nitric acid 5%	4
2377	Yes	No		
2378	Yes	Other	New/disposable vessel	
2379	No	Yes	Nitric acid 5%	4
2380	Yes	Yes	Nitric acid 5% & DI water	8
2381	Yes	Yes	Nitric acid 5% & DI water	8
2382				
2385	Yes	No		
2390	Yes	NO		
2406	Yes	Yes	NITIC ACID 10%	>1
2410	Yes	Yes	NITTIC ACID 4%	ю
2415	res	INO Maa	Nitria a sid 50/	
2429	res	res	Nitric acid 5%	4
2442	Voc	105 Voc	Nitrio acid 5%	12
2409	105 Voc	res Vec	Nitric acid 10%	4 16
2402 2175	1 CO Vac	Vec	Nitric acid 5%	5
2410	Yes	Other	New/disposable vessel	
2402	Yes	No		
2492	Yes	No		
02		· -		

lab	ISO/IEC 170251 accredited?	pre-cleaning of test vessel?	cleaning solution	time of cleaning (hours)
2495	Yes	No		
2496	Yes	Yes	Nitric acid 20%	24
2497	Yes	No		
2500	Yes	Yes	Nitric acid 2mol/L & DI water	4
2511				
2514	Yes	Yes	Nitric acid 5%	4
2522	Yes	No		
2532	Yes	Yes	Divers	0.5
2553	Yes	Yes	Aqua Regia	24
2560	Yes	Yes	Nitric acid 10%	24
2563	Yes	Other	Nitric acid 2%	0.08
2582	Yes	Yes	Niric acid 5% and distilled water	Overnight
2590	Yes	No		
2624	NO	Yes	Nitric acid 5%	20
2629	Yes	Yes	NITIC ACID 30%	24
2041	Yes	Yes		0
2052	res	res	Nitric acid 15% +1 Grade water	
2007	Yes	NO	 Nitria agid E%	 A
2074	Yes	No		4
2705	No	No	Nitric acid 5%	1
2703	Vec	Other		
2713	Ves	Ves	Nitric acid 5%	 A
2720	Yes	Yes	Nitric acid	12
2758	No	No		
2804	Yes	Other	New/disposable vessel	
2818	Yes	No		
2829	Yes	Yes	Nitric acid 5%	4
2832	No	Yes	as required in method	4
2833			'	
2858	Yes	No		
2864	Yes	Yes	Nitric acid 2%	24
2878	No	Other	Plastic bag/cleaned with DI water	24
3100	Yes	Yes	Nitric acid 65%	4
3116	Yes	Yes	Nitric acid 5%	4
3118	Yes	No		
3146	Yes	Other	New/disposable vessel	
3150	Yes	No		
3153	Yes	Yes	Nitric acid 5%	4
3154	Yes	No		
3160	No	Yes	Soap without metals/distilled water	12
31/2	Yes	No		
3179	Yes	NO		
3182	NO	Yes	Nitric acid 10%	24
2100	Yes	Yes	Nillic acid 5%	4 0
2107	Yes	Yes	Nillic acid 5%	
3200	Ves	Ves	Nillo aciu 370 Di water	ч 4
3210	Yes	Other	Décon	 <1
3210	Yes	Yes	Nitric acid 50%	24
3218	Yes	No		
3228	Yes	No		
3237				
3246	Yes	Yes	Nitric acid 5%	>4
3248	Yes	Yes	Artificial sweat	24

Detailed description on how object was measured for sample #19556 Please, describe as detailed as possible how you have measured and calculated the surface of the object lab 110 Used a string with lubricant to obtain the length. Took the width to calculate the surface area as a cylinder 210 230 Considered as a cylinder Digital caliper and Excel sheet for calculation 339 348 Surface of one link in the chain was calculated by approximation to a cylinder (lateral area). Total surface was calculated as six times this area (six links). Dimensional measurements were made with caliper 362 523 Calculated as the area of a cylinder using: π^* diameter*length*6 551 Height and diameter of the link were measured. The area was calculated by the cylinder formula Each chain was calculated as a cylinder with top and bottom as a circle. The chain surface area then multiply by 6 as the 623 number of chains 840 2102 The area of 1 ring is calculated by using the formula for a cylinder. This is multiplied by 6 to calculate the area of all 6 rings 2115 We have opened one ring of the chain and we have considered it as a cylinder, then we have multiplied this value for 6 ring One chain link was opened and stretched to a cylindric shape; the surface of this cylinder was measured; as the chain consists 2117 of six chain links this surface area was multiplied by six 2129 One chain link was measured using a digital measuring slide. The result was multiplied by factor 6 (number of chain links) 2132 Find out the circumference and diameter of the link and calculate as area of cylinder 2135 We used wire and digital caliper 5) Total chain Surface Area = 2(¢³d*L) + 2{¢³R*(¢³d)} = 2(¢^{3*1.6*6.7}) + 2{¢^{3*9.4*}(¢^{3*1.6})} = 364.23 mm² / 1 chain = 3.6423 cm² 2137 / 1 chain = 3.6423 cm^2 * 6 chain = 21.8538 cm² (unrounded) 2138 We used the vernier calipers for calculated the surface area. = 3.14*(0.175/2)^2*2*6 + 2.3*3.14*0.175*6 2139 Vernier calipers 2165 Use Vernier to calculate manually 2172 For 1 link : measure the length and diameter of 1 link. Side area (Perimeter multiply length) + Top and bottom(two round surface) 2184 2201 Treated the single ring as a cylinder, caculated 6 cylinders's surface area 2213 ----2215 -----2216 -----2229 2232 Assume it is cylinder 2238 Approximate cylinder area, Using vernier caliper measurement The up/down area is calculated by diameter/length 2241 One link of chain was open and result area as cylinder. This area multiplied by total no of links 2247 2250 chain link formed to a straight shape, measurement by caliper rule, height of chain link = 2,58 cm, diameter of chain link = 0.18cm, calculated as circular cylinder = 1,51 cm² surface area of 1 chain link = 1,51 cm² 2255 Cylindrical Chain . Sued to measuer slide caliper, scale 2256 1. measure the diameter of a ring (d): 0.176 cm 2. measure the length of a ring loop (L): 2.518 cm 3. Calculate the ring's surface area : 2*pi*(d/2)^2+ pi*d*L 4. times 6 for 6 rings 2265 2272 -Treat ring as cylinder; -Measure the length of cylinder, the diameter of the two head and bottom sections 2289 Straighten one ring, and calculated the surface as a cylinder. And multiply by the number of rings 2290 2293 One link was separated from the chain, then it was opened to its original cylinder form and the area calculated as such. The area was then multiplied times 6 for the complete chain sample 2295 The area was measured by 3D Scanner Measure Diameter, length and calculate tube surface area 2301 2310 We calculate the surface area of object (circle)using vernier caliper 2311 2330 Digital caliper 2347 2350 It was calculated by the sum of each cylinder area 2352 2357 -----2363 -----2365 A=πdl*6 2366 Calculate as cylinder 2369 2370 The six rings are first pulled into a column shape, and after calculating the cylinder, the areas are added 2374 First calculate the surface determination of 1 links chain, and then multiply by 6 to get the total surface 2375 -----2377 -----2378 ____ 2379 Vernier caliper 2380 Firstly one ring area was calculated among whole chain. One ring like as solid cylinder, so we consider it cylinder law. Then we multiply with six as this chain was contain six chain 2381 Firstly one ring was calculated among whole chain. One ring like as solid cylinder, so we consider it cylinder law. Then we multiply with six as this chain was contain six rings 2382 Measure as hollow column, caculate the surface as follow: =(26.72mm*1.76mm*3.14+3.14/4*1.76mm*1.76mm*2)*6=9.15cm2 2385 Diameter and thickness of the links were measured. From the diameter the length of the sample was calculated. The surface was calculated from diameter and length

²³⁹⁰ Consider only one loop and then straight it. Then consider it as a cylinder and apply formula of surface area of cylinder (i.e πld) then multiply it by total no. of loops. (i.e 6)

lab	Please, describe as detailed as possible how you have measured and calculated the surface of the object
2406	Bend the ring into a straight rod and measure the length of it. Multiple the length of one ring with no. of ring (6pcs). The length of one ring is 2.585cm and the radius of rod is 0.179/2 cm
2410	
2415	Total area of the chain is 6 times of area of 1 piece Consider area of 1 piece of the chain as area of 2 rods and a ring
2429	I ne area of the sample is regarded as a regular and easily calculated area by filling
2442	
2459	
2402	We have use the formula below to calculate the Side area of a cylinder: area= π dh with d= 0.18cm and h= 3cm
2482	Dioital caliper
2489	Measured with Vernier caliber, Length, width and thickness and calculated. Holes portions substracted
2492	Each chain is separated into 2 half-circle and 2 straight line
2495	Calculation based on single ring: lenght of the ring measured with a wire; surface calculated as cylinder. Value multiplied by 6 (the number of rings)
2496 2497	Straighten the sample, then measure and calculate with vernier caliper 3D scanner
2500	Remove a link ring from the chain, make it into a straight shape with a tool .Calculate the area as the Cylinder similarly;Use the vernier caliper to determine the diameter and length
2511	
2514	
2522	Our lab used the digital vernier caliper
2532	By digital vernier caliber
2553 2560	Draw the sample, divide to desired snapes and calculate the total surface The sample consists 6 twisted ring, considered each as a whole cylinder. We used formula for Surface Area Measurement is
2563	A-(200272100)X0 One Piece abstracted to a cylindrical shape and Determination of the sheath surface: multipled for 6
2582	Measure the surface area of one loon and multiplied it by number of loons in the chain
2590	Lused the following dependencies is chindren and bull
2624	Measured with a digital caliber, approximating the links to elliptical shapes
2629	Spread each unit of the chain to "cylinder" then calculated around surface area
2641	Caculated each ring's surface area, then sum together
2652	
2657	Using caliper
2674	Use vernier to calculate manually
2703	Link opened and straightened. Surface area of cylinder formula used. Height measured with calibrated ruler (26mm). Diameter measured with calibrated calipers (1.79mm), radius 1/2 of this (0.895mm). Surface area for 1 link calculated as 151.242 sqmm. Multiplicate high endotries that the straight of the straighto straight of the straight of the strai
2705	
2703	
2720	Cut the metal circle, test and calculate the area
2741	The chain have 06 links. One link should be lengthened; it is a cylinder
2758	
2804	Treat the ring as a straight metal round rod and calculate the surface area (2*pi*r*h) accordingly
2818	S=(πdl+πr2*2)*6
2829	the area of a ring was calculated through the area of a cylinder
2832	We have cut one part of the chain, stratched it and finally measured the dimensions (lenght and thickness) with calibre
2833	Remove one link and Count as solid cylinder after that multiply with 6.
2858	Straighten the sample and measure the length and diameter
2804	Measure 1 unit and then multiple to for the full sample
2070	Measure in equatine is and total religit of the criatility approximate to the cyminder area formula. By calculating the circumfarence and the length of each link to obtain the surface area of each link and finally summed together.
3116	One sample was cut and measured in diameter and length. Sample are measured in 4 point using calibrated Vernier Caliper. The area calculated using the formula of the "tube blanket" area. The final result of the area multiplied by 6 rings
3118	One chain link bent up, calculated as cylinder multiplied by 6 links
3146	
3150	Geometric approximation
3153	
3154	One link was opened to measure like a cylinder. Then, this surface was multiplied by six
3160	
3172	One chain link was opened and stretched in a cylindric shape; the surface of this cylinder was measured; as the chain consists of six chain links this surface area was multiplied by six
31/9	By using equation(2 x 3.14 x m)x6 When r is radius of chain, h is length of chain and multiply with 6 chain.
3182	Straighten one repeating unit of the chain sample and calculate it's surface area as a cylinder , then multiply the number of repeating units:6
3185	I ne sample is divided into several small cylinders, which can be see in the remarks
3191	Digital caliper was used to determine the surface area. Unly the are of 1 ring of the chain was measured, and the area was multiplied by 6 then. The area of the ring is calculated such that it is opened and thought as a cylinder.
3107	First calculate the area of a ring. Then multiply the area of this ring by 6 to get the area of the chain
3209	6x(Tore: 4x3 14x3 14xRxr + 2cvlindres: 2x 2x3 14xrxh)
3210	Measure the length and width of a single metal ring
3214	r=0.0885cm,L=2.6cm;S=2πrL*6

- 3214 3218
- -----3228 -----
- 3237 -----
- Using a thin string to determine the circumference of the ring
 Used a string with lubricant to obtain the length. Took the width to calculate the surface area as a cylinder

Number of participants per country

7 labs in BANGLADESH

1 lab in BRAZIL

1 lab in BULGARIA 1 lab in CAMBODIA

4 labs in FRANCE

12 labs in GERMANY

1 lab in GUATEMALA

11 labs in HONG KONG

6 labs in INDIA

3 labs in INDONESIA

8 labs in ITALY

1 lab in LUXEMBOURG

1 lab in MAURITIUS

1 lab in MEXICO

1 lab in MOROCCO

36 labs in P.R. of CHINA

2 labs in PAKISTAN

1 lab in SINGAPORE

5 labs in SOUTH KOREA

2 labs in SPAIN

2 labs in SRI LANKA

1 lab in SWITZERLAND

3 labs in TAIWAN R.O.C.

2 labs in THAILAND

1 lab in THE NETHERLANDS

1 lab in TUNISIA

4 labs in TURKEY

2 labs in U.S.A.

1 lab in UNITED KINGDOM

7 labs in VIETNAM

Abbreviations:

С	= final test result after checking of first reported suspect test result
D(0.01)	= outlier in Dixon's outlier test
D(0.05)	= straggler in Dixon's outlier test
G(0.01)	= outlier in Grubbs' outlier test
G(0.05)	= straggler in Grubbs' outlier test
DG(0.01)	= outlier in Double Grubbs' outlier test
DG(0.05)	= straggler in Double Grubbs' outlier test
R(0.01)	= outlier in Rosner's outlier test
R(0.05)	= straggler in Rosner's outlier test
E	= possibly an error in calculations
U	= test result possibly reported in a different unit
W	= test result withdrawn on request of participant
ex	= test result excluded from the statistical evaluation
n.a.	= not applicable
n.e.	= not evaluated
n.d.	= not detected
fr.	= first reported

Literature:

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning (REACH) under entry 27 of Annex XVII, 2012
- 3 EN1811:2011 + AC2012
- 4 Horwitz, R. Albert. Journal of AOAC International, <u>79 No.3</u>.,589 (1996)
- 5 P.L. Davies. Fr Z. Anal. Chem. <u>351</u>. 513. (1988)
- 6 W.J. Conover. Practical; Nonparametric Statistics. J. Wiley&Sons. NY., 302. (1971)
- 7 ISO 5725 (1986)
- 8 ISO 5725 parts 1-6. (1994)
- 9 ISO13528:2015 Statistical methods for use in proficiency testing by interlaboratory comparisons
- 10 M. Thompson and R. Wood. J. AOAC Int. 76, 926. (1993)
- 11 Analytical Methods Committee Technical brief, No 4 January 2001.
- 12 P.J. Lowthian and M. Thompson The Royal Society of Chemistry 2002, Analyst 2002, <u>127</u>, 1359-1364
- Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, *Technometrics*, <u>25(2)</u>, 165-172, (1983)